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Divergence and curl of the inertial particle
velocity in a four-way coupled

turbulent channel flow

By J. R. West, T. Oujia‡, K. Matsuda¶, K. Schneider‡, S. S. Jain
AND K. Maeda

Inertial particle data from three-dimensional direct numerical simulations of dilute,
four-way coupled particle-laden turbulent channel flow at Reτ ≈ 230 are analyzed. De-
launay tessellation is applied to the particle positions considering a range of mass loading
(10−100%). Using finite-time measures, we then quantify the divergence and rotation of
the particle velocity using the methods in Oujia et al. (2020, 2022a). Statistical analyses
of divergence and curl are performed, along with their dependence on the wall distance,
to assess the influence of the flow anisotropy. Divergence and curl fluctuations are most
intense in the buffer layer due to the stronger fluctuations of fluid velocity there. The
probability density functions (PDFs) of the divergence and curl show that the particle
inertia gives heavier tails to the PDFs, implying extreme events. The greatest effect of
mass loading is observed in the viscous sublayer, where substantial damping in divergence
and curl fluctuations is observed as mass loading is increased.

1. Introduction

Particle-laden turbulent flows over walls occur in many natural and engineered systems.
Examples include sediment transport in rivers, dust storms in the atmospheric boundary
layer (Hutter 2005), and chemical processes in industrial riser reactors (Basu 2006). In
all of these examples, particles are transported by the flow and exert drag forces back
on the flow. Experiments by Kulick et al. (1994) showed that that at sufficient mass
loading, the particle phase can significantly attenuate the fluid turbulence in channel
flow. Because of their finite inertia, particles preferentially concentrate in regions of low
vorticity and high strain, leading to complex dynamics of clusters (Squires & Eaton
1991). Sweeps and ejections in wall turbulence play an important role in cluster dynamics
and near-wall accumulation in particle-laden channel flow (Marchioli & Soldati 2002).
Clustering also affects the optical depth in gas flows laden with heavy particles, which
is important in the design of particle-based solar receivers (Pouransari & Mani 2016)
and in radiation absorption in clouds (Matsuda et al. 2012). The complex physics of
particle collisions, combined with the strong flow modifications that occur at large mass
loading, makes these flows difficult to predict. In addition, the optical depth makes them
difficult to study experimentally, making simulations an attractive way to improve our
understanding.
An essential tool for analyzing particle-clustering statistics is tessellation. Monchaux et

al. (2010) used Voronoi tessellation to characterize the dependence of clustering on Stokes
number. This technique has been largely applied in homogeneous isotropic turbulence,
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but a few studies have applied it to wall-bounded flows. For example, Nilsen et al. (2013)
confirmed the nonmonotonic behavior of clustering with respect to Stokes number in
channel flow using Voronoi tessellation in wall-parallel slices of the domain. To gain
further insight into the dynamics of particle clouds, gradient information of the particle
velocity could be used. For instance, the divergence of the particle velocity quantifies
structure formation in particle clouds, i.e., voids and clusters. However, because particle
velocities are only defined at particle positions, there is an inherent difficulty in using
standard spatial differential operators to compute the gradient information. Oujia et al.
(2020) proposed a method for quantifying the divergence using tessellation of particle
positions. The time change of the tessellation cell volume was shown to yield a measure
of the divergence of the particle velocity. A method for computing the curl of the particle
velocity was then introduced in Oujia et al. (2022a) in order to quantify rotation of
particle clouds.
The goal of the current work is twofold. First, we present the Direct Numerical Sim-

ulation (DNS) data of a four-way coupled channel flow for different mass loading, and
briefly characterize the effect of mass loading on the mean flow and turbulent fluctua-
tions, in comparison with the channel flow data without particles. Second, we apply the
tessellation-based method to determine the divergence and curl of the inertial particle
velocity. With that, we investigate the void/cluster formation and the rotation/swirling
motion of particles in different flow regions: the viscous sublayer, the buffer layer, and
the logarithmic region.

2. Governing equations and the four-way coupled channel flow data

The channel flow data analyzed in this work was obtained using the Soleil-MPI code,
which is briefly described here; more details on this code can be found in Esmaily et
al. (2020). The Navier-Stokes equations for incompressible flow with particle two-way
coupling terms are solved as

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+ µ∇2u+

Np∑
m=1

f (m)δ(x− x(m)), (2.1)

where u is the fluid velocity, ρ is the (constant) fluid density, p is the hydrodynamic
pressure, and µ is the dynamic viscosity. The last term is the summation of the two-way
coupling force contribution from each particle f (m), over all particles Np, based on the
Dirac-delta function δ(·), which has units of inverse volume and whose argument is the
distance between a position in the fluid x and a given particle x(m). Because the focus in
this work is on flows with a small total volume fraction (all below 1.5×10−4), the volume
displacement effect has been ignored. The particle drag force is the drag correlation for
finite Reynolds numbers from Schiller & Naumann (1935)

f (m) = 3πµDp

(
1 + 0.15Re0.687p

) (
v(m)
p − ũ(m)

)
, (2.2)

where Dp is the particle diameter, v
(m)
p is the velocity of particle m, ũ(m) is the undis-

turbed fluid velocity at the particle location, and Rep is the particle Reynolds number.
Soleil-MPI solves the above equations using a finite-volume method with second-order

explicit spatial derivatives. At each time step, a pressure Poisson equation is solved
numerically using a geometric multigrid method to guarantee mass conservation. The
two-way-coupling terms in the momentum equations are obtained by distributing the
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Reτ Np ϕ0 St+

Flow 0 229 0 0 N/A
Flow 1 225 1.43 × 107 0.1 6.90
Flow 2 227 5.70 × 107 0.4 7.01
Flow 3 234 1.43 × 108 1.0 7.45

Table 1. Parameters of the channel flow data: the friction Reynolds number Reτ , the number
of particles Np, the overall mass loading ϕ0, and the friction Stokes number St+. The density
ratio between particle and fluid is 8900/1.2 ≈ 7417.

force associated with each particle among the surrounding grid points using trilinear
interpolation, using the correction scheme proposed by Esmaily & Horwitz (2018) to
account for particle disturbances on the fluid velocity.
Each particle trajectory is computed according to the equations of motion for a single

particle of mass mp, neglecting gravity

ẋp
(m) = v(m)

p , (2.3)

mpv̇p
(m) = −f (m). (2.4)

Time advancement for both the Eulerian fluid variables and the Lagrangian point par-
ticles is done with a second-order Runge-Kutta method. Collisions with walls and other
particles are accounted for assuming perfectly elastic collisions according to the hard
sphere model.
A suite of particle-laden channel flow cases, described in Table 1, are used in this work

to assess the role of mass loading, which is defined as the ratio of particle mass to fluid
mass: ϕ = nmp/ρ, where n is the particle number density. Each case is described by its
total mass loading ϕ0, but ϕ varies in time and space for each flow. The Stokes number
is approximately the same across the different cases, and its value was chosen to ensure
a strong degree of preferential concentration.
The fluid and particle properties are based on the experiments described in Esmaily

et al. (2020), with a channel geometry instead of a duct. The fluid is air, with ρ = 1.2
kg/m3 and µ = 1.87× 10−5 Pa-s. The particles are monodisperse spheres with diameter
Dp = 11.5 µm. The total mass loading ϕ0 is varied by changing the number of particles,
using a constant particle density of ρp = 8900 kg/m3. Across all simulation cases, the
fluid mass flux is held constant. As ϕ0 is increased, Reτ decreases slightly and then
increases, indicating drag reduction or increase, depending on the amount of particles
added. The small change in Reτ also corresponds to a small change in Stokes number, as
indicated in Table 1. The Stokes number used in this work is the friction Stokes number,
St+ = τp/τvisc, which is the ratio of the particle relaxation time scale τp = ρpD

2
p/(18µ)

to the viscous time scale associated with the wall shear stress τvisc = δ/
√
τw/ρ.

All simulation cases use the same domain and boundary conditions. The channel di-
mensions are 4πδ×2δ×(4/3)πδ (where δ = 2cm), with periodic boundary conditions in x
and z, and smooth, no-slip walls in y. A grid resolution of [Nx, Ny, Nz] = [280, 140, 140]
was used to resolve the fluid turbulence at reasonable computational cost. The com-
putational grid is stretched in the wall-normal direction and is uniform in homogeneous
directions. For the single-phase baseline case, we use 23 grid points below y+ = 10, where
y+ is the wall-normal coordinate normalized by the viscous length scale. The centerline
grid resolution is [∆x+,∆y+,∆z+] = [10.5, 9.1, 7.0].



West et al.

For the statistics reported in the following sections, all simulation cases were run
until a steady state was reached. Then, simulations were continued for a minimum of
five flow-through times. Eulerian fluid statistics were obtained by averaging continuously
throughout this period, as well as over homogeneous directions, and Lagrangian statistics
were computed from ten snapshots evenly distributed during the averaging time.

3. Particle tessellation and differential analysis of the particle velocity

3.1. Voronoi and Delaunay tessellation

A Delaunay tessellation of the particle positions defines a graph. The dual graph then
defines a cell Cp for each point particle, which has the property that all points inside
are closer to the particle than to the other particles. For computing the 3D tessellation
(Aurenhammer 1991), we apply the Quickhull algorithm (Barber et al. 1996) to the
particle positions at two consecutive time instants. This is very similar to the Voronoi
tessellation, with the exception that instead of using the circumcenter of the Delaunay
cell, which is done for Voronoi, we use the center of gravity to define the vertices of the
cell. Oujia et al. (2022b) showed that this further improves the stability of the numerical
method when computing divergence and curl.

3.2. Definition of divergence and curl

To compute the divergence of the particle velocity D(vp), following the lines of Oujia et al.
(2020, 2022b), we first compute the local number density averaged over a cell Cp, which
is the inverse of the cell volume. Particles satisfy the conservation equation of the number
density n:Dtn = −n∇·vp, whereDt = ∂t+v·∇ is the Lagrangian derivative. Considering
two subsequent time instants tk and tk+1 = tk + ∆t of the Delaunay tessellation with
time step ∆t, we can determine the volume change. Thus we obtain the divergence as

D(vp) = − 1

n
Dtn ≈ 1

2∆t

(
1

V k+1
p

+
1

V k
p

)
(V k+1

p − V k
p ), (3.1)

where V k
p is the tessellation cell volume at tk.

Similarly, the curl of the particle velocity can be defined by computing the circulation
of the velocity field of particles over a cell Cp. This can also be expressed as the divergence
of the velocity, which has been projected onto the orthogonal plane of the direction of the
curl through the origin and rotated in a direction π/2 with respect to the direction of the
curl. Defining v⊥

x = Axv, v
⊥
y = Ayv and v⊥

z = Azv, where Ax, Ay and Az are rotation
matrices around the different axes, the curl of the particle velocity C(vp) is obtained by

C(vp) =

D
(
−v⊥

p,x

)
D
(
−v⊥

p,y

)
D
(
−v⊥

p,z

)
 . (3.2)

For more details and a thorough validation in the case of one-way coupled particle-laden
isotropic turbulence, we refer to Oujia et al. (2020, 2022b). When computing statistics
of curl, the mean shear and symmetry in the wall-normal direction must be accounted
for. The z-component of curl, Cz, is dominated by mean shear (du/dy), which changes
sign at y = δ. For this reason, in the statistics that follow, Cz is used in the bottom half
of the channel, and its negative is used in the top half.
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(c)(b)(a)

Figure 1. (a) Mean streamwise fluid velocity, u+, as a function of wall-normal distance, y+, for
various mass loadings, as well as without particles. (b) Fluid phase turbulent kinetic energy. (c)
Local mean mass loading. The legend in panel (a) applies to all subfigures.

4. Results

In four-way coupled turbulent channel flow, particles alter the fluid velocity, both in
the mean and fluctuations. In addition, particles tend to accumulate near the channel
walls due to turbophoresis (Reeks 1983; Marchioli & Soldati 2002). Figure 1 shows the
degree of these changes depending on the mass loading. The mass loading decreases the
velocity gradient in the log layer, with greater effect at larger mass loading. In terms of
turbulence, the presence of particles generally attenuates fluid-phase turbulent kinetic
energy (TKE), as shown in Figure 1(b), with greater attenuation as ϕ0 is increased.
Because of two-way coupling, the particle phase velocity fluctuations (not shown here)
are similarly attenuated. Figure 1(c) shows the local mass loading normalized by the
total mass loading, which peaks very close to the wall due to the effect of turbophoresis.
As mass loading is increased, collisions are more frequent, disrupting the tendency to
accumulate near the wall. At lower values of ϕ0, this results in stronger gradients in
mass loading through the viscous sublayer and a greater difference in mass loading from
near-wall to centerline.
Next, we examine the effect of mass loading on particle phase Lagrangian statistics. In

this section and the following, the channel flow is broken up into three regions based on
the wall-normal distance. For this purpose, the viscous sublayer is defined as the region
y+ = [0, 5], the buffer layer is defined as y+ = [5, 30], and the logarithmic (log) layer is
defined as [y+ = 50, y/δ = 1]. Strictly speaking, this definition includes the wake region
as well, but the particle clustering observed in these two regions is very similar.
To gain a qualitative understanding of clustering and particle divergence in the different

flow regions and for different mass loadings, Figure 2 shows particle positions colored by
divergence in wall-parallel slices. In the viscous sublayer, particles are organized into
low-speed streaks, and most particles show zero divergence, meaning they are being
transported without clustering. In the regions with nonzero divergence, positive and
negative divergence are intermixed, suggesting crossing trajectories and collisions. In the
buffer layer, the streaky structures are still visible, but the prevalence of convergence and
divergence is greatly increased, and it is concentrated in hairpin-like structures. Finally, in
the log layer, the clustering becomes similar to that of moderate Stokes number particles
in homogeneous isotropic turbulence (HIT) (Oujia et al. 2020). At larger mass loading,
there is a greater proportion of zero-divergence particles, particularly in the viscous
sublayer and buffer layers. As ϕ0 is increased, the particles are more densely packed, but
the structures remain qualitatively similar. Only ϕ0 = 0.1, 0.4 are shown, but the same
qualitative trend continues to ϕ0 = 1.
To quantify the clustering behavior, Figure 3(a) shows PDFs of modified Voronoi
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(c) (f)

Figure 2. Particle positions colored by divergence in wall-parallel slices for (a) viscous sublayer,
ϕ0 = 0.1; (b) buffer layer, ϕ0 = 0.1; (c) log layer, ϕ0 = 0.1; (d) viscous sublayer, ϕ0 = 0.4; (e)
buffer layer, ϕ0 = 0.4; and (f) log layer, ϕ0 = 0.4. Divergence is normalized by the viscous time
scale, and the color bar is truncated to emphasize regions of zero divergence.

volumes for each flow region and mass loadings, normalized by the mean modified Voronoi
volume within each layer V p,l, in order to remove the effect of the wall-normal variation in
mass loading. Across the viscous sublayer, buffer, and log layers, there is clear deviation
from a random particle distribution with greater probabilities of both clusters and voids
(small and large values of Vp,l/V p,l, respectively). The PDFs become noisy at extreme
values due to lack of samples. The smallest volumes reported are bound from below by
particle collisions. The viscous sublayer distribution is the noisiest at this extreme because
of the normalization used. Particles are more densely packed in the viscous sublayer due
to turbophoresis, so the average volume in the layer is smaller, shifting the curve to the
right relative to other layers.

The distribution of voids is strikingly similar across layers and mass loadings. The
viscous sublayer behaves somewhat differently, in that the left side of the PDFs in this
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(a) (b)

Figure 3. (a) PDF of modified Voronoi volume as a function of flow region and mass loading,
normalized by the mean modified Voronoi volume within each layer. (b) PDF of particle diver-
gence as a function of flow region for ϕ0 = 0.1. The divergence is normalized by the viscous time
scale.

ϕ0 0.1 0.4 1.0

Viscous 6.06×10−3 2.45×10−3 1.79×10−3

Buffer 10.96×10−3 12.12×10−3 9.78×10−3

Log 2.15×10−3 2.54×10−3 2.47×10−3

Table 2. Variance of the particle velocity divergence normalized by the viscous time scale for
different layers and mass loadings ϕ0.

zone are closer to a random distribution than are those in other regions. Because particle
clusters in the viscous sublayer are dominated by zero-divergence particles in low-speed
streaks, we infer that particles in the streaks become nearly randomly distributed due
to collisions during their long residence time. This tendency toward random distribution
in clusters increases with mass loading, likely due to the increased role of collisions and
attenuation of fluid turbulence in the viscous sublayer.
Next, we examine PDFs of particle divergence for ϕ0 = 0.1 in Figure 3(b). The variance

is largest in the buffer layer, as expected, because the near-wall peak of the fluid turbulent
kinetic energy occurs around y+ ≈ 12, even with the addition of particles. The buffer
layer shows the greatest variance in divergence across all flow cases, as reported in Table
2. In all layers, the divergence distribution exhibits negative skewness, increasing in
magnitude away from the wall, indicating a greater likelihood of intense convergence than
intense divergence. Additionally, the heavy tails of the PDFs indicate a high prevalence
of extreme events, which is expected for inertial particles. At the tails, the PDFs become
noisy due to the low frequency of extreme events, which could be improved by averaging
over additional flow snapshots.
To highlight the effect of mass loading in the different flow regions on particle diver-

gence, we show PDFs for each region in Figure 4, normalized by the viscous timescale:
D+ = τviscD. In the buffer and log layers, the heavier tails of the PDFs at larger mass
loading are evident. This may be due in part to the larger number of particles as ϕ0 is
increased, which offers more sampling to capture extreme events, as described by Oujia et



West et al.

(a) (b) (c)

Figure 4. PDF of particle divergence, normalized by the viscous time scale, for three different
mass loadings in the (a) viscous sublayer, (b) buffer layer, and (c) log layer.

al. (2020). This issue affects the viscous sublayer least, because turbophoresis makes the
number density similar there, despite the overall change in mass loading. The variance
of the divergence in the viscous sublayer decreases as ϕ0 increases, which is likely due
to the greater fluid turbulent kinetic energy at low mass loading. The greater variance
for ϕ0 = 0.1 can be seen in Figures 2(a) and 2(d), in which a greater proportion of
particles are zero-divergence (green) at the higher mass loading. The changes to particle
divergence in the buffer and log layer due to mass loading are less substantial, though
there may be a weak maximum in variance at ϕ0 = 0.4, as shown in Table 2.

In addition to divergence, the particle velocity curl can be used to characterize the
vortical motion of clusters. Figure 5 shows the three components of particle velocity curl
across the flow regions. Like the divergence, curl has been normalized by the viscous
timescale: C+ = τviscC. In the viscous and buffer layers, the z-component is clearly
asymmetric with a negative mean and nearly symmetric in the log layer. The x and
y curl distributions are symmetric across all flow regions. This directional dependence
can be explained by the mean shear and homogeneity in x and z. Heavier tails as ϕ0 is
increased are again observed due to increased sampling at larger ϕ0. The most significant
change due to mass loading is observed in the viscous sublayer, where the larger mass
loading shows a narrower PDF with strongly decreased likelihood of positive z curl, i.e.,
locally reversed flow. Narrowing of the distribution is expected based on the tendency of
particles to stabilize the near-wall streaks and attenuate velocity fluctuations. Similar to
divergence, the particle velocity curl in x and y directions has the greatest variance in the
buffer layer, which suggests that stronger particle convergence/divergence is associated
with stronger vortical motions.

Another important feature is the anisotropy of the vorticity fluctuations, which can be
seen for each flow region in the comparatively narrow PDF of Cx. While a small degree of
anisotropy is expected in the log layer for low-Reynolds number channel flow (Andersson
et al. 2015), the extreme attenuation of Cx relative to the other two components is
unique to particle-laden wall turbulence. As ϕ0 is increased, particle-laden wall turbulence
becomes more anisotropic, dominated by streamwise velocity fluctuations (Li et al. 2001).
Streamwise velocity fluctuations can contribute to vorticity fluctuations in Cy and Cz but
not Cx, hence the strong attenuation. These effects are present in both fluid and particle
vorticity due to the two-way coupling. The fact that the curl is most isotropic in the log
layer is also reflected in the particle visualization in Figure 2(c,f), which are qualitatively
similar to previous results for HIT (Oujia et al. 2020).
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(a) (b) (c)

Figure 5. PDF of three components of curl, normalized by the viscous time scale, for three
different mass loadings in the (a) viscous sublayer, (b) buffer layer, and (c) log layer.

5. Conclusions

In this study, tessellation-based methods for computing particle velocity divergence and
curl were applied to four-way coupled channel flow for the first time, and the influence
of mass loading and flow region on these quantities was examined in detail. Clustering
in the log layer and centerline was found to be qualitatively similar to the previous
results for homogeneous isotropic turbulence (HIT) in Oujia et al. (2020). Clusters in
the viscous sublayer are dominated by low-speed streaks of transported particles which
are nearly randomly distributed. Moreover, particle velocity divergence and curl have
the greatest variance in the buffer layer, due to the greater strength of turbulent velocity
fluctuations there. The influence of mass loading was most strongly observed in the
viscous sublayer, where increasing mass loading contributes to reduction in the variance
of particle velocity divergence, due to the attenuation in fluid turbulence. Increasing mass
loading also narrows the distribution of the spanwise component of curl in the viscous
sublayer, which goes along with the stabilization of near-wall streaks as particles are
added. It is surprising that a similar attenuation is not observed in the buffer and log
layers, although this may be obscured because the number of particles increases with the
mass loading, resulting in more sampling of extreme values. The curl of particle velocity
was found to be strongly anisotropic in addition to being strongly skewed due to the mean
shear. The relative isotropy of the curl in the log layer corresponds with the similarities
in clustering between the log layer and HIT.
The focus of the present work has been on differences due to the flow region and mass

loading, but in the future, the effect of Stokes number should be considered as well. In
addition, wavelet-based statistics can be used to characterize the scale dependence of
particle clustering. Finally, the curl and velocity information can be used together to
calculate helicity, to characterize swirling particle motions.
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