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Multiresolution analysis of inertial particle
tessellations for clustering dynamics

By K. Matsuda†, K. Schneider‡, T. Oujia‡, J. West, S. S. Jain AND K. Maeda

We propose a multiresolution tessellation technique to analyze multiscale statistics of
particle velocity divergence defined at discrete particle positions. Our approach enables
computation of the scale-dependent divergence by leveraging a wavelet transformation
of Lagrangian point particle data and is important for characterizing particle clustering
in turbulent flows. The technique is systematically verified by using synthetic data of
randomly distributed particles in a two-dimensional plane. We demonstrate the tech-
nique by extracting the scale-dependent particle velocity divergence of inertial particles
in homogeneous isotropic turbulence from direct numerical simulation data. The result
is verified by comparing the energy spectrum of the divergence with that obtained by a
Fourier-based approach.

1. Introduction

Inertial heavy particles suspended in high–Reynolds number turbulence are ubiquitous
in geophysical and industrial flows; e.g., cloud droplets in atmospheric flows, dust particles
in protoplanetary disks, and spray combustion. The inertial particles form nonuniform
spatial distribution (i.e., clustering) in turbulence, because the particles are swept out
from turbulent eddies and concentrate in low vorticity and high–strain rate regions.
The particle clustering in high–Reynolds number turbulence has multiscale structures.
Recently, Matsuda et al. (2021) showed the cluster/void pronounced structures of inertial
particle clustering depend on the spatial scale and the Stokes number. Therefore, to
predict the particle behavior, it is important to understand and model the multiscale
dynamics of the particle clustering. The key quantity to evaluate the particle cluster
formation is the divergence of the particle velocity. However, it is still challenging to
obtain multiscale particle velocity divergence information based on discrete Lagrangian
particle position and velocity data, i.e., particle cloud data.
Tools from discrete mathematics enable efficient description and representation of par-

ticle cloud data, for instance tessellations and graphs, which have been successfully used
in various applications, for example in neuroscience and telecommunication. Oujia et al.
(2020) proposed a tessellation technique to calculate the particle velocity divergence using
the position and velocity of Lagrangian particles. This technique allows us to access the
particle velocity divergence at a particle position based on the temporal rate of change in
volume of a tessellation cell. The use of a graph representation of the particle data, i.e.,
a mathematical structure of vertices and edges, then permits the application of signal-
processing techniques on graphs, a growing subject over the last years—see, e.g., Shuman
et al. (2013). In particular, multiresolution analysis, which is related to wavelets, can be
constructed and applied to tessellations. Thus, tessellations can be coarse-grained and re-
fined to obtain scale information. Multiresolution constructions were originally developed
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on Cartesian grids (Mallat 1999), and generalizations for triangles can be found in Cohen
et al. (2000) and Yu & Ra (1999). Wavelets on graphs have been likewise constructed
in Avena et al. (2020). In the current paper, we develop a straightforward approach to
construct a multiresolution analysis on graphs having the multiscale decomposition of
the particle velocity divergence in mind. Coarsening and refinement operators are intro-
duced and wavelet coefficients are defined as details between two levels. A fast algorithm
for this purpose is proposed that works efficiently for millions of particles, and thus scale
decomposition of the particle velocity divergence can be determined, yielding insight into
the multiscale dynamics of clustering.
This report is organized as follows. In Section 2, the basic equations for the concerned

particle-laden flows and the tessellation technique to analyze the particle velocity di-
vergence are briefly outlined. The proposed multiresolution technique is described in
Section 3. Sections 4 and 5 present the results from application of the proposed tech-
nique to two-dimensional (2D) data of random particles with artificial signals and three-
dimensional (3D) data of inertial particles with the particle velocity divergence data in
homogeneous isotropic turbulence (HIT), respectively. Finally, conclusions are summa-
rized in Section 6.

2. Particle-laden flows and particle velocity divergence

We consider the Navier–Stokes and continuity equations for an incompressible flow,

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ f , ∇ · u = 0, (2.1)

where u(x) is the fluid velocity field, p(x) is the pressure, ρ is the fluid density, ν is the
kinematic viscosity, and f(x) is an external forcing. The Lagrangian motion of small and
heavy inertial particles in a fluid flow can be modeled by the following equations based
on the point particle assumption,

dxp

dt
= vp ,

dvp

dt
= −vp − u(xp)

τp
, (2.2)

where xp is the particle position, vp is the particle velocity, and τp is the particle relax-
ation time. The term on the right-hand side of the second equation in Eq. (2.2) is the
drag force term. Here, we assume that the particle density is sufficiently larger than the
fluid density and that the effect of gravitational settling is negligibly small. When the
particles are moving in a turbulent flow, statistics of the particle clustering depend on
the Stokes number St, defined as the ratio of τp and a flow time scale.

The particle-clustering mechanism can be discussed based on the conservation equation
of the particle number density field n(x) in continuous setting. If there is no external
source or sink for the particle number density, the conservation equation is given by

∂n

∂t
+ v · ∇n = −n∇ · v, (2.3)

where v(x) is the particle velocity field in continuous setting. This means that the source
and sink for the number density n along the Lagrangian particle trajectory are given
by the term on the right-hand side, and the negative/positive values of the particle
velocity divergence ∇ · v contribute to the cluster formation/destruction, respectively.
If the particles are tracers, which perfectly follow the fluid motion, the particle velocity
divergence ∇ · v becomes zero in an incompressible flow and the particle clustering does
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not occur. Thus, the source of clustering is the deviation of particle motion from the fluid
flow. Maxey (1987) evaluated the particle velocity divergence using an approximation for
St ≪ 1. Maxey’s approximation yields that ∇ · v is proportional to the second invariant
of the velocity gradient tensor, and it explains the preferential concentration mechanism.
However, the approximation is not valid for particles with St ≳ 1, which show significant
particle clustering.

The particle distribution and velocity data can be obtained by performing direct nu-
merical simulation (DNS) of particle-laden flows in which the fluid flow field u(x) is
obtained by solving Eq. (2.1) on Eulerian grid points, and the particle position and ve-
locity are obtained by solving Eq. (2.2) based on the Lagrangian method. The difficulty
of calculating the particle velocity divergence is due to the discrete nature of particles.
To compute the particle velocity divergence based on the DNS data, Oujia et al. (2020)
proposed a tessellation technique based on the temporal rate of change in volumes. The
particle velocity divergence D(xp) = (∇ · v)(xp) at the particle position xp is given by
D(xp) = (1/V )(DV/Dt), where V is the volume of the tessellation cell that contains the
particle at xp. To define the tessellation cells around a particle, Oujia et al. (2020) used
the Voronöı tessellation, and recently Oujia et al. (2022) used the center of gravity of
the Delaunay tetrahedron for the vertex of the cell for a stability reason. The tessella-
tion technique allows us to access the particle divergence values at the particle positions.
However, to analyze the multiscale clustering dynamics, it is necessary to develop a
multiresolution tessellation technique for the particle velocity divergence data.

3. Construction of multiresolution analysis on graphs

3.1. A primer on multiresolution analysis on regular grids

We consider a discrete signal {sn} = {s̄J,n} ∈ RNon one-dimensional (1D) equidistant
grids at {xJ,n} ∈ RN , where N = 2J and the scale of the grid spacing is 2−J . Note that
the signal can be a spatial field data sampled at discrete points distributed in the space.
For the multiresolution analysis, the signal on 2J grid points is projected to 2J−1 grid
points at xJ−1,i = xJ,2i for i = 0, · · · , 2J−1 − 1. Hence, the scale of grid spacing becomes
2−(J−1). The coarsening of the signal can be described by

s̄J−1,i = PJ→J−1{s̄J,n}, (3.1)

where s̄J−1,i is the signal at xJ−1,i at the coarser scale, and PJ→J−1 is the projection
operator. By applying the projection operator to the coarser signal recursively, we can
define the signal {s̄j,n} at the scale 2−j (j = 0, · · · , J − 1), where the scale index j
decreases as the scale becomes coarser. Figure 1 shows the relationship between the scale
2−j and 2−(j−1). The signal {s̄j,n} at the scale 2−j can be projected to the scale 2−(j−1)

based on Eq. (3.1), with J replaced by j. The signal at the finer scale 2−j can be predicted
by using the signal at the scale 2−(j−1),

ŝj,2i+1 = Pj−1→j{s̄j−1,n}, (3.2)

where ŝj,i is the predicted signal at xj,i, and Pj−1→j is the prediction operator. The detail
information confined in space and scale can be then defined as the difference between
the original and the predicted signal,

dj−1,i = s̄j,2i+1 − ŝj,2i+1, (3.3)
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Figure 1. Illustration of projection and prediction operators for 1D regular grids.

where dj,i is the detail coefficient for the scale index j and the position index i. The
projection and prediction operators determine the characteristics of the multiresolution
analysis. For the wavelet transform, the operators must satisfy

Pj→j−1 ◦ Pj−1→j = Id, (3.4)

where ◦ is the composition operator and Id the identity.

3.2. Multiresolution graphs

To construct a multiresolution technique for a signal on discrete particle positions, it is
necessary to define the projection and prediction operators, and these operators require
the information of neighbor particles. Since we use the tessellation to obtain the particle
velocity divergence data, the neighbor particles can be specified as the particles in the
neighbor tessellation cells. The cell for each particle and the neighbor cells are connected
by the edges obtained from Delaunay tessellation. Therefore, the particles and the edges
of Delaunay tessellation can be considered to be an undirected graph that represents the
neighbor cells.
In mathematics, a graph is defined as vertices connected by edges. To apply multires-

olution analysis on graphs, multiresolution graphs are needed. Here, the multiresolution
graph construction starts from the finest scale, which is level 0. Therefore, we use the
level index l = 0, · · · , L − 1, which increases as the scale becomes larger. Note that the
constructed graphs do not change even when increasing the number of levels L. The
coarser graph at level l + 1 is constructed from the finer graph at level l. For the graph
coarsening, we adopted the half-edge collapse operator (Kobbelt et al. 1998), in which
one vertex is merged with an adjacent vertex. Figure 2 shows the schematic diagram of
the merging process. Here, the vertex P1 is merged to the vertex P2, and P1 is removed.
The edges connected to P1 and P2 are integrated. Based on the analogy to the 1D regular
grid case, P1 and P2 can be considered to be the odd and even vertices. Since we con-
sider particle distributions in the physical space, we assume that each particle (i.e., each
vertex on the graph) has the information of the tessellation cell volume. The algorithm
for constructing the graph at level l+ 1 from the graph at level l is as follows: (i) Select
the vertex with the minimum volume among all the unmarked vertices on the graph, and
consider it to be the odd vertex. (ii) Select the vertex with the minimum volume among
the unmarked vertices neighboring to the odd vertex, and consider it to be the even
vertex. (iii) Merge the odd vertex to the even vertex: The odd vertex is removed, and
the even vertex is marked to be shifted to level l + 1. If there is no unmarked neighbor
vertex at step (ii), the odd vertex is marked and shifted to level l+1 without the merging
process. Steps (i)–(iii) are repeated until all the vertices are marked.
The volume conservation is a key feature to represent the physics on the graph. There-

fore, the volume value of the marked vertex is updated to the sum of the volumes at-
tributed to the even and odd vertices. When the volume attributed to the even and odd
vertices at level l are given by V l

2i and V l
2i+1, respectively, the volume attributed to the
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Figure 2. The point-merging process on the Delaunay graph. (a) The graph before merging.
The edges of the Delaunay graph represent the neighboring cells. The odd point P1 will be
merged to the even point P2. (b) The graph after merging. The graph edges are modified to
represent connection with the cells neighboring the merged cell.

vertex marked and shifted to level l+ 1 satisfies V l+1
i = V l

2i + V l
2i+1. If the odd vertex is

shifted to level l + 1 without the merging process, the volume value is not updated.

3.3. Wavelet transform on graphs

Here, we consider a signal s0i = s0(xp,i) (i = 0, · · · , Np− 1) on discrete particle positions
(i.e., vertices on a graph). Since we aim to apply the multiresolution analysis to the
particle velocity divergence data, we propose the wavelet transform on graphs based on
the following conservation equation

V l+1
i s̄l+1

i = V l
2is̄

l
2i + V l

2i+1s̄
l
2i+1, (3.5)

where s̄li is the signal of the ith vertex on the graph at level l, and the index 2i and
2i+1 represents the even and odd vertices, respectively. The projection operator is then
defined as

s̄l+1
i =

1

V l+1
i

(V l
2is̄

l
2i + V l

2i+1s̄
l
2i+1). (3.6)

For the prediction operator, we simply assume that the predicted values are the same as
the projected signals at the coarser level,

ŝl2i = s̄l+1
i , ŝl2i+1 = s̄l+1

i . (3.7)

The prediction and projection operators satisfy the identity (3.4). The detail coefficient
(i.e., the wavelet coefficient) is then given by the difference between the original and
predicted signals, yielding

dl+1
i =

V l
2i

V l+1
i

(s̄l2i+1 − s̄l2i). (3.8)

The wavelet coefficient based on the L2 normalization can be obtained by multiplying

the detail coefficients with the scaling factor σl+1
i =

√
V l+1
i V l

2i+1/V
l
2i.

For multiscale statistics of the signal on discrete particle positions, we can consider qth

order moments of details dli,

Mq[d
l
i] =

1

N l

N l∑
i=1

(dli)
q, (3.9)

where N l is the number of detail coefficients at level l.
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4. Application to 2D test cases

The multiresolution tessellation is applied to random particle distributions in a 2D
square domain with edge length 2π. Two types of signals are generated for the signal
value of each particle instead of the particle velocity divergence data. The first one is a
Gaussian noise of N (0, 1), i.e., zero mean and unit variance. The second one is a spectral
signal defined as

s0i = s0(xp,i) = A−1
Nk∑

kx=1

Nk∑
ky=1

a(|k|) sin[kxxp,i + θx(k)] sin[kyyp,i + θy(k)], (4.1)

where xp,i = (xp,i, yp,i), k = (kx, ky), a(|k|) = exp[−|k|2π2/(24k2c )] is the Gaussian
filtered amplitude for the cutoff wave number of kc = 20, and θx(k) ∈ [0, 2π) and
θy(k) ∈ [0, 2π) are the random phase shifts. The signal is normalized by A so that the
standard deviation of s0i becomes unity. This signal is also a Gaussian noise but is spatially
correlated due to the low-pass filtered amplitude. The Fourier energy spectrum of the
signal is proportional to k|a(k)|2, where k = |k|. Thus, the spectrum is approximately
proportional to k1 for k ≪ kc and has a peak at k ≈ 0.78 kc.
The tessellation cells and the projected signals s̄li for each level l for the Gaussian

noise are visualized in Figure 3. The number of particles is Np = 104. The signals are
normalized by the standard deviation of the signal at each level. We can observe that
the size of the same color regions increases as the level increases, and this indicates that
the tessellations at different levels have different spatial scales.
Figure 4 shows the statistics obtained from the 2D multiresolution analyses for Np =

105. Figure 4(a) presents the probability density function (PDF) of volume V l
i for each

level l. The volume is normalized by the mean volume Vmean = (2π)D/Np, where D
is the space dimension. As the level increases, the peak of the PDF shifts to larger
volumes. Here, we also use the volume information for defining the spatial scale: The

volume scale dV is defined as dV = [(1/N l)
∑N l

i=1 V
l
i ]

1/D. Note that the obtained dV is
approximately proportional to 2l/D. The first- and second-order moments of the detail
coefficients are shown in Figures 4(b) and (c), respectively. The first-order moment M1

shows some deviations from zero, and the absolute values are smaller than 6% of the
standard deviation of the signal for both the Gaussian noise and spectral signal cases.
These are stochastic errors of the given signals, and they are expected to decrease by
taking the ensemble average. The second-order moment for the Gaussian noise shows
the scaling close to d−2

V , and that for the spectral signal shows a peak around dV ≈
10−1. These characteristics of the second-order moments can be discussed based on the
wavelet energy spectrum defined below. Here, we define the volume-based wave number
as kV = π/dV , because the wavelength for each wavelet is given by the pair of neighboring
volumes. The wavelet energy spectrum is then defined as

EMR(kV ) =
N lM2[σ

l
id

l
i]

(2π)D∆kV
, (4.2)

where ∆kV is the bandwidth of the wavelets at each level l and is approximately deter-
mined as ∆kV = (21/D − 1)kV ln 2/D. Note that the wavelet energy spectrum is defined
based on the coefficient in the L2 normalization by multiplying with the scaling factor
σl
i so that the spectrum has the same scaling as the Fourier spectrum. Figure 4(d) shows

the wavelet energy spectrum. EMR(kV ) for the Gaussian noise is approximately propor-
tional to kV , as expected for the Fourier energy spectrum. EMR(kV ) for the spectral
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Figure 3. Multiresolution tessellation for a 2D uniform random particle distribution for levels
(a) 0, (b) 1, (c) 2, (d) 3, (e) 4, and (f) 5. The number of particles is Np = 104. The tessellation
cells are colored with the coarse-grained signals based on the Gaussian random noise.

signal shows rapid decay for kV ≳ kc, having a peak around k ∼ kc. These results are
consistent with the characteristics of the Fourier energy spectra for these signals. There-
fore, we can conclude that the present multiresolution technique can capture the scale
dependence of the signals at particle positions.

5. Application to 3D isotropic turbulence

We apply the proposed multiresolution technique to the particle velocity divergence
D for inertial particles in 3D HIT, i.e., s0i = D(xp,i). We used the particle position and
velocity data obtained from the DNS by Matsuda et al. (2014). The HIT was computed
in the cubic computational domain with edge length 2π. The number of grid points is
5123, and the Taylor microscale Reynolds number is Reλ = 204. The Stokes number
based on the Kolmogorov time τη (i.e., St ≡ τp/τη) is St = 1.0. The number of particles
is Np = 1.5 × 107. The mean particle number density is ⟨n⟩η3 = 0.030. The particle
velocity divergence D is calculated by the tessellation technique described in Section 2.

Figure 5(a) shows the PDF of volume V l
i for each level l for inertial particles in HIT.

Similar to the 2D random particles, the peak of the PDF moves to larger volumes as
the level increases. However, the separation of the scale is not as clear as in the 2D
case because the variance of the tessellation cell volume for clustering particles is larger
than that for random particles. Figure 5(b) shows the PDF of projected values of D for
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Figure 4. (a) Probability density functions (PDFs) of volume, (b) first and (c) second order
moments of detail coefficients, and (d) wavelet spectra for the Gaussian noise and the spectral
signal at random particles for Np = 105.
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Figure 5. Probability density functions (PDFs) of (a) volume and (b) projected particle
velocity divergence for inertial particles in HIT for Reλ = 204, St = 1, and Np = 1.5× 107.

each level l. The PDF becomes narrower as the level increases. This confirms that the
present multiresolution technique can be used for coarse-graining the divergence values
at discrete particle positions.
Figure 6(a) shows the wavelet energy spectrum. The scaling of EMR(kV ) changes

around kV η ≈ 0.2. This scale is close to the peak wave number of the Fourier energy spec-
trum of the number density (kη ≈ 0.2) reported by Matsuda et al. (2014). To compare
EMR(kV ) with the Fourier spectrum, we computed the Fourier spectrum of n(x)D(x),
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Figure 6. (a) Wavelet energy spectrum and (b) Fourier energy spectrum of the particle
velocity divergence D for inertial particles in HIT for Reλ = 204, St = 1.0, and Np = 1.5× 107.

i.e., EnD(k) =
∑

k−1/2≤|k|<k+1/2 n̂D(k)n̂D
∗
(k), where n̂D(k) is the Fourier coefficient

of n(x)D(x) and is computed by the analytical Fourier transform (Matsuda et al. 2014):
Since the divergence values are defined only at particle positions, the spatial distribution

of n(x)D(x) can be expressed as n(x)D(x) =
∑Np

i=1 D(xp,i)δ(x−xp,i), where δ(x) is the
Dirac delta function. By applying the Fourier transform, we obtain

n̂D(k) = (2π)−3

Np∑
i=1

D(xp,i) exp(−ιk · xp,i). (5.1)

Note that the divergence data at particle positions inherently contain the information of
the particle number density distribution. Thus, the wavelet spectra EMR(kV ) based on
the multiresolution tessellation should be compared with the Fourier spectrum based on
Eq. (5.1). Figure 6(b) shows the Fourier spectrum EnD(k). The scaling for kη ≲ 0.1 is
approximately k1, and the spectrum values are nearly constant for 0.2 ≲ kη ≲ 1. We can
confirm that the similar scaling of k1V is observed in the wavelet spectrum EMR(kV ) for
kV η ≳ 0.1. The peak wave number of EMR(kV ) is approximately kV η ≈ 0.4. The narrow
wave number range of the peak is due to the broad range of the volume, as shown in
Figure 5(a). Therefore, the present multiresolution analysis can appropriately capture
the scaling of the multiscale structure of particle velocity divergence of inertial particles
in 3D turbulence.

6. Conclusions

We have developed a multiresolution tessellation technique to evaluate multiscale
statistics of particle velocity divergence defined at discrete particle positions. The pro-
posed multiresolution technique has been applied to 2D random particle distributions for
two test signals, a Gaussian noise and a spectral signal, and a 3D inertial particle distribu-
tion with the particle velocity divergence in HIT. We showed that the proposed technique
can decompose the signals at different scales depending on the level of multiresolution tes-
sellation, and the validity of the proposed approach has been confirmed by comparing the
results with Fourier techniques using a small number of particles. The wavelet approach
allows us to decompose coherent and incoherent signals, i.e., denoising, and has been used
to extract coherent clusters of inertial particles in turbulent flows (Bassenne et al. 2017).
Hence, the proposed technique for particle cloud data can be used to extract coherent
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structures of particle velocity divergence in particle-laden turbulence without projecting
particle cloud data onto Cartesian grids. Moreover, higher-order scale-dependent statis-
tics can be computed, e.g., scale-dependent flatness and skewness (Matsuda et al. 2021),
based on particle cloud data. These statistics could be important to understanding the
multiscale and intermittent behaviors of particles in high–Reynolds number turbulence.
Exploring this new multiresolution avenue for particle-laden turbulence is left for future
work. In particular, application to the analysis of particle clustering in particle-laden
turbulent channel flow is a part of our ongoing investigations (West et al. 2022).
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