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A B S T R A C T

Clustering dynamics of inertial particles in turbulent channel flow are studied via tessellation-based analysis
of high-fidelity simulation data at 𝑅𝑒𝜏 ≈ 230 with various values of mass loading (10%− 100%) and the Stokes
number (𝑆𝑡+ = [1 − 60]). We then characterise the solenoidal, rotational, and swirling motions of clusters by
computing the probability density functions (PDFs) of the divergence, curl, and helicity of the particle velocity,
as well as their dependence on wall-normal distance, using the methods of Oujia et al. (2020); Maurel–Oujia
et al. (2023). Particle inertia gives heavier tails to the PDFs of divergence and curl, suggesting enhanced
intermittency in the convergence/divergence of clusters, and in their rotational motions. The fluctuations
of the divergence and curl are most intense in the buffer layer, due to the stronger fluctuations of fluid
velocity there. Similarities are identified between the cluster dynamics in the logarithmic region and those
in homogeneous isotropic turbulence, including the dependence of divergence, curl, and helicity on Stokes
number. The effect of increasing mass loading on cluster dynamics is relatively small except in the viscous
sublayer, where attenuation of clustering, rotation, and swirling motions are observed. The effect of increasing
Stokes number on the viscous sublayer is different, resulting in more intense convergence/divergence and
rotation of particle clusters, as the particles become more independent of the carrier fluid.
1. Introduction

Particle-laden turbulent flows over walls occur in many natural and
engineering systems. Examples include sediment transport in rivers,
dust storms in the atmospheric boundary layer (Hutter, 2005), chemical
processes in industrial riser reactors (Basu, 2006), and novel radiation
absorbers in concentrating solar power plants (Ho, 2016). In all of
these systems, particles form clusters and voids due to interaction with
the turbulence. Clustering also affects the optical depth in gas flows
laden with particles, which is particularly important in the design of
particle-based solar receivers (Frankel et al., 2017) and in radiation
absorption in clouds (Matsuda et al., 2012). The complex physics of
cluster formation, combined with the strong turbulence modulation
which occurs at high mass loading, makes these flows difficult to pre-
dict and model (Balachandar and Eaton, 2010). In addition, the large
optical depth makes them difficult to study experimentally, making
simulations an essential tool to improve understanding.

Particle clustering is known to be weak at very small and very large
Stokes numbers and to peak at intermediate Stokes numbers. In the
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limit of small Stokes number, this can be explained by particles prefer-
entially concentrating in regions of low vorticity and high strain Maxey
(1987), Squires and Eaton (1991), i.e. they are centrifuged out of eddies
because of their finite inertia. For moderate to large Stokes number,
the explanation of decreased clustering is an area of ongoing interest.
The ability of higher Stokes number particles to be affected by the
history of their trajectories appears to be an important factor (Bragg
and Collins, 2014; Liu et al., 2020). Other researchers point to the
sweep-stick mechanism, which suggests that particles stick to zero-
acceleration points in the flow, which are swept along by large-scale
eddies (Chen et al., 2006; Coleman and Vassilicos, 2009). Recent work
by Esmaily-Moghadam and Mani (2016) and Esmaily and Mani (2020)
has succeeded in predicting the non-monotonic trend in clustering by
analysing the Lyapunov exponents of small-scale particle clouds. At
small Stokes number, this depends on local flow characteristics, but
as Stokes number increases, the flow history and structure become
increasingly dominant.
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In channel flow, the dynamics of particle clustering are affected
by the presence of the wall. It is known that particles tend to accu-
mulate in regions of low turbulence intensity, such as near the wall,
a phenomenon known as turbophoresis (Reeks, 1983). This tends to
increase the particle concentration, but inter-particle collisions coun-
teract this and play an important role in determining the equilibrium
concentration near the wall (Li et al., 2001; Vreman, 2007). Fur-
thermore, many experimental and computational studies have found
that particles in the viscous sublayer and buffer layers accumulate in
elongated streaks (Marchioli and Soldati, 2002; Soldati and Marchioli,
2009; Sardina et al., 2012; Fong et al., 2019). These correspond to
the low-speed streaks in the fluid velocity (Robinson, 1991). Sweeps
and ejections in wall turbulence also play an important role in cluster
dynamics and near-wall accumulation (Marchioli and Soldati, 2002).
As a result, clusters are constantly formed and annihilated as well
as subjected to strong rotational motions near the wall. Fessler et al.
(1994) studied particle clustering in the channel centreline using ex-
periments with heavy particles. They found a peak in preferential
concentration at intermediate Stokes numbers, and a systematic shift
of clustering to smaller scales as the Stokes number decreases. Nilsen
et al. (2013) used Voronoi tessellation to study particle clustering in
a one-way coupled channel flow at different wall-normal distances.
They found that preferential concentration (measured by the variance
of the Voronoi volume PDF) peaked at an intermediate Stokes number
and was strongest close to the wall and around the channel centre.
They and Capecelatro and Desjardins (2015) also studied the effect
of gravity on clustering in channel flow, both finding that in flows
aligned with gravity, particles migrate towards the channel centre, but
migrate towards the wall in flows against gravity. Nilsen et al. (2013)
attribute this to the particles’ mean velocity dictating which eddies
they preferentially sample. At large mass loading with significant two-
way coupling, Capecelatro and Desjardins (2015) hypothesise that the
accumulation is due to minimisation of local drag. Fong et al. (2019)
found in their channel flow experiments significant differences in par-
ticle clustering depending on wall-normal location. Clusters showed
a preference for streamwise alignment throughout the flow, but this
became more pronounced closer to the wall.

In addition to clustering, an important feature of particle-laden
flows is that the particles exert drag forces back on the flow, and many
authors have studied the effect of two-way coupled particles on wall-
bounded flows. We present highlights of the literature relevant to this
work, but refer readers to reviews by Balachandar and Eaton (2010)
and Brandt and Coletti (2022) for greater depth. Experiments by Kulick
et al. (1994) showed that at a mass loading of 0.1, the particle phase
noticeably attenuates the fluid velocity fluctuations in turbulent chan-
nel flow, and this attenuation increases with mass loading. Turbulence
attenuation with an increase in mass loading was also confirmed in an
early computational study of particle laden channel flow by Li et al.
(2001). They also found that the anisotropy of fluid Reynolds stresses
greatly increased with mass loading. Vreman (2007) studied particle-
laden vertical pipe flow over a mass loading range of 0.11 to 30 and
also found that turbulence is significantly suppressed with larger mass
loading. Lee and Lee (2015) explored the effect of Stokes number at
mass loading of 0.3 using point-particle simulations, finding that par-
ticles with very low inertia could enhance the fluid turbulence, while
larger particles attenuate it, and that maximum preferential concentra-
tion of particles occurred at a moderate Stokes number. In the context
of turbulent Couette flow, Richter and Sullivan (2013) found that with
an increase in mass loading the viscous stresses remain nearly constant
while the fluid turbulent stress becomes weaker, and is replaced by
a stress due to fluctuations in particle velocity. Recently, Costa et al.
(2021) studied near-wall turbulence modulation with small particles
up to mass loadings of 0.5, with the goal of reconciling conflicting
reports about two-way coupled channel flows, such as observations of
drag increase and decrease. They used particle-resolved simulations and
2

found many of the same features as earlier studies regarding the effect
of mass loading, including decreased turbulence intensity, increased
anisotropy, and a transfer of Reynolds stresses from the fluid to particle
phase.

In the present work, we study the clustering, rotation, and swirl of
particle clouds in a turbulent channel flow with dilute volume fraction,
but with mass loading (1), which makes making the effect of the
particles on the carrier phase dynamics significant. These flows are
impractical to simulate with particle-resolved direct numerical simu-
lations, so we opt for an Euler–Lagrange approach (Kuerten, 2016),
which allows for exploration of a wide range of mass loading and
Stokes numbers at affordable cost. The large number of particles also
makes analysis of particle clustering difficult, motivating the use of new
methods for doing so.

A useful numerical tool for analysing particle clustering in Euler–
Lagrange simulations is tessellation. In brief, a tessellation decom-
poses a domain into geometric shapes. This is useful for analysing
particle clustering by defining a tessellation based on the particle
locations. Monchaux et al. (2010) used the Voronoi tessellation to
characterise the effect of Stokes number on particle clustering. This
technique has been widely applied in homogeneous isotropic turbu-
lence, and to a lesser extent in wall-bounded flows (e.g. Nilsen et al.,
2013). To gain further insight into the dynamics of particle clouds,
tessellation-based techniques have been developed recently to compute
velocity gradients from dispersed particle data. Oujia et al. (2020)
proposed a method to quantify the formation of clusters and voids by
computing the time change of the tessellation cell volume. A method
for computing the curl of the particle velocity was also introduced
in Oujia et al. (2022), Maurel-Oujia et al. (2023), in order to quantify
the rotation of particle clouds.

Knowing the curl, the helicity of the particle motion can also be
determined, which yields insight into the processes that determine the
flow topology (Moffatt and Tsinober, 1992). Swirling flows are charac-
terised by strong helicity, and in the turbulence community, helicity has
been used to characterise three-dimensional swirling coherent struc-
tures, which correspond to flow regions of maximum helicity (Farge
et al., 2001). Similarly, the helicity of the particle velocity can be
used to determine whether particle motions are two-dimensional (zero
helicity) or three-dimensional.

The goal of the present work is to bring detailed insights into the
clustering and motion of heavy, inertial particles in wall turbulence, in
the regime of moderate mass loading. This is accomplished by applying
tessellation-based analysis to a set of numerical data of high-fidelity,
four-way coupled Euler–Lagrange simulations. Unlike in homogeneous
isotropic turbulence (HIT), the cluster dynamics in channel flow have a
strong dependence on their wall-normal distance. In order to quantify
this dependence, we compute the probability density functions (PDFs)
of divergence, curl, and helicity in the viscous sublayer, buffer layer,
and logarithmic layers for both fluid and particle phases. To the best of
our knowledge, such an analysis has not been previously performed.

The effects of particle mass loading and Stokes number on the
PDFs of each layer are characterised with the aid of flow visualisations
obtained by colouring particles with divergence, vorticity magnitude,
or helicity. In the log layer, in which small-scale turbulence becomes
more homogeneous and isotropic than the other layers, differences and
similarities with the previous results of HIT are discussed with com-
parisons to the work of Matsuda et al. (2014) and Oujia et al. (2020),
especially with respect to the dependence of clustering on Stokes num-
ber. Matsuda et al. (2014) found that as Stokes number was increased,
the energy spectra of particle number density increased in intensity
while retaining the same shape before shifting to a peak at larger scales
above a critical Stokes number. Oujia et al. (2020) found a saturation
at a critical Stokes number in the intensity of divergence/convergence
values. Similar saturation is observed qualitatively in the log layer
results presented here. Finally, the particle-based Fourier transform
is used to obtain scale information on the particle number density

distribution, and to understand what scales of clustering contribute to
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the trends observed in the PDFs. Preliminary versions of this study were
reported in West et al. (2022) and West (2023).

The remainder of this manuscript is organised as follows. In Sec-
tion 2, the numerical methods used in this work are described, includ-
ing the channel flow simulation database (Section 2.1), the tessellation
approach for obtaining divergence, curl, and helicity (Section 2.2), and
the method for calculating Fourier spectra of particle number density
fluctuations (Section 2.3). Section 3 presents Eulerian statistics for
the fluid phase (Section 3.1) and Lagrangian statistics for the particle
phase, considering the effect of Stokes number (Section 3.2.1) and mass
loading (Section 3.2.2). Fourier spectra of number density fluctuations
are likewise analysed (Section 3.3). Finally, conclusions are drawn in
Section 4.

2. Methods

2.1. Channel flow simulations

The four-way coupled particle-laden channel flow simulations were
performed using the Soleil-MPI code, which is briefly described here;
more details can be found in Esmaily et al. (2020). The Navier–Stokes
equations for incompressible flow with particle two-way coupling terms
are solved as

𝜕 (𝜌𝒖)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖⊗ 𝒖) = −∇𝑝 + 𝜇∇2𝒖 +
𝑁𝑝
∑

𝑚=1
𝒇 (𝑚)𝛿Dirac(𝒙 − 𝒙𝑝(𝑚)), (1)

where 𝒖 is the fluid velocity, 𝜌 is the (constant) fluid density, 𝑝 is the
hydrodynamic pressure and 𝜇 is the dynamic viscosity. The last term is
the summation of the two-way coupling force contribution from each
particle 𝒇 (𝑚), over all particles 𝑁𝑝, based on the Dirac-delta function
𝛿Dirac(⋅), which has units of inverse volume, and whose argument is
the distance between a position in the fluid 𝒙 and a given particle
𝒙𝑝(𝑚). Because all simulation cases in this work have a small particle
volume fraction (less than 1.5 × 10−4), the volume displacement effect
has been ignored. The particle drag force uses the drag correlation for
finite Reynolds numbers from (Schiller and Naumann, 1935), which is
given by

𝒇 (𝑚) = 3𝜋𝜇𝐷𝑝

(

1 + 0.15𝑅𝑒0.687𝑝

)(

𝒗(𝑚)𝑝 − 𝒖̃(𝑚)
)

, (2)

where 𝐷𝑝 is the particle diameter, 𝒗(𝑚)𝑝 is the velocity of particle 𝑚,
𝒖(𝑚) is the undisturbed fluid velocity at the particle location, and 𝑅𝑒𝑝 =
𝜌𝐷𝑝|𝒗

(𝑚)
𝑝 − 𝒖̃(𝑚)|∕𝜇 is the particle Reynolds number.

Soleil-MPI solves the above equations using a finite-volume method
with second-order explicit spatial derivatives. At each timestep, a pres-
sure Poisson equation is solved using a geometric multigrid method to
achieve a divergence-free velocity field. The two-way-coupling terms
in the momentum equations are obtained by distributing the force
associated with each particle to the surrounding grid points using tri-
linear interpolation, using the correction scheme proposed by Esmaily
and Horwitz (2018) to account for particle disturbances on the fluid
velocity.

Each particle trajectory is computed according to the equations of
motion for a single particle of mass 𝑚𝑝, neglecting gravity, as

̇ (𝑚)𝑝 = 𝒗(𝑚)𝑝 , (3)

𝑝𝒗̇(𝑚)𝑝 = −𝒇 (𝑚). (4)

ecent works have indicated that gravity can have a significant effect
n particle distribution and dynamics, depending on the Stokes number
nd other flow parameters (Lee and Lee, 2019; Bragg et al., 2021), but
e neglect this effect here for simplicity. Time advancement for both

he Eulerian fluid variables and the Lagrangian point particles is done
ith a second-order Runge–Kutta method. Collisions with walls and
ther particles are accounted for assuming perfectly elastic collisions
3

ccording to the hard sphere model. t
Table 1
Parameters of the channel flow data: the friction Reynolds number 𝑅𝑒𝜏 , the number
of particles 𝑁𝑝, the particle to fluid density ratio 𝜌𝑝∕𝜌, the overall mass loading 𝜙0,
the average mass loading in the viscous sublayer 𝜙visc, the average mass loading in the
buffer layer 𝜙buf, the average mass loading in the logarithmic layer 𝜙log, the friction
Stokes number 𝑆𝑡+, and the Kolmogorov Stokes number based on the dissipation rate
averaged over the logarithmic layer 𝑆𝑡log𝜂 .

𝑅𝑒𝜏 𝑁𝑝 𝜌𝑝∕𝜌 𝜙0 𝜙visc 𝜙buf 𝜙log 𝑆𝑡+ 𝑆𝑡log𝜂

Flow 0 229 0 N/A 0 0 0 0 N/A N/A
Flow 1 225 1.43 × 107 7.42 × 103 0.1 1.37 0.13 0.06 6.90 0.69
Flow 2 227 5.70 × 107 7.42 × 103 0.4 2.36 0.59 0.32 7.01 0.59
Flow 3 234 1.43 × 108 7.42 × 103 1.0 3.54 1.41 0.88 7.45 0.54
Flow 4 263 1.43 × 109 7.42 × 102 1.0 1.52 1.12 0.98 1.02 0.075
Flow 5 273 4.51 × 108 2.35 × 103 1.0 2.63 1.31 0.93 2.98 0.21
Flow 6 213 4.51 × 107 2.35 × 104 1.0 2.79 1.58 0.85 19.6 1.42
Flow 7 210 1.43 × 107 7.42 × 104 1.0 2.10 1.47 0.89 60.0 3.66

A suite of particle-laden channel flow cases, described in Table 1,
are used in this work to assess the role of mass loading and Stokes
number. Mass loading is defined as the ratio of particle mass to fluid
mass: 𝜙 = 𝑛𝑚𝑝∕𝜌, where 𝑛 is the particle number density. Each case
is described by the mass loading averaged over the domain, 𝜙0, but 𝜙
varies in time and space for each flow due to preferential concentration
and turbophoresis. Due to turbophoresis, the mass loading decreases
with wall distance, as indicated by the average mass loadings for each
flow region in Table 1. The Stokes number primarily used in this work
is the friction Stokes number, 𝑆𝑡+ = 𝜏𝑝∕𝜏𝑣𝑖𝑠𝑐 , which is the ratio of the
particle relaxation time scale 𝜏𝑝 = 𝜌𝑝𝐷2

𝑝∕(18𝜇) to the viscous time scale
associated with the wall shear stress 𝜏𝑣𝑖𝑠𝑐 = 𝛿∕

√

𝜏𝑤∕𝜌. The channel half-
height is 𝛿, 𝜌𝑝 is the particle density, and 𝜏𝑤 is the wall shear stress.
Table 1 also includes the Kolmogorov Stokes number 𝑆𝑡log𝜂 , which is
defined based on the dissipation rate 𝜖 of turbulent kinetic energy
averaged over the range 50 < 𝑦+ ≤ 𝑅𝑒𝜏 , i.e., 𝑆𝑡log𝜂 = 𝜏𝑝

√

𝜌𝜖∕𝜇. Here, 𝑦+
is the wall-normal coordinate normalised by the viscous length scale
𝑙𝑣𝑖𝑠𝑐 = 𝜇∕

√

𝜌𝜏𝑤. 𝑆𝑡log𝜂 is used to facilitate comparison with results from
IT. The cases in which 𝑆𝑡+ is varied all have 𝜙0 = 1, at which inter-
hase coupling is strong, and the cases in which 𝜙0 is varied all have
𝑡+ ≈ 7, at which a strong degree of preferential concentration is
xpected based on the simulations of Lee and Lee (2015).

The fluid and particle properties are based on the benchmark ex-
eriments and computations described in Esmaily et al. (2020), with
channel geometry instead of a duct. These experiments used small

ickel particles in a turbulent air flow. Accordingly, in our simulations,
he carrier fluid is air, with 𝜌 = 1.2 kg∕m3 and 𝜇 = 1.87 × 10−5 Pa-s,
nd the particles are monodisperse spheres with diameter 𝐷𝑝 = 11.5

μm. In terms of the Kolmogorov length scale in the logarithmic layer,
the particles range from 𝐷𝜂

𝑝 = [0.03 − 0.043], permitting the use of the
point-particle approximation. The average mass loading 𝜙0 is varied
by changing the number of particles, using a constant particle density
of 𝜌𝑝 = 8900 kg∕m3 (the density of nickel). The Stokes number 𝑆𝑡+

s varied by changing the particle density and number of particles at
constant 𝜙0. Across all simulation cases, the fluid mass flux is held

onstant. As 𝑁𝑝 and 𝜌𝑝 are varied, 𝑅𝑒𝜏 varies slightly from the no-
article value. This indicates either drag reduction (𝑅𝑒𝜏 decrease) or
rag enhancement (𝑅𝑒𝜏 increase). Small amounts of drag reduction
ue to two-way coupling have been observed in some other studies,
s described by Zhao et al. (2013), while more recent particle-resolved
imulations have shown only drag increase for 𝜙0 < 0.5 (Costa et al.,
021). The small changes in 𝑅𝑒𝜏 contribute to small changes in 𝑆𝑡+, as
ndicated in Table 1.

For all cases except Flow 4, the overall volume fraction, 𝛼0 =
0∕((𝜌𝑝∕𝜌𝑓 ) + 𝜙0), is less than 10−3, which is generally considered the

hreshold above which inter-particle collisions (i.e. four-way coupling)
ecome important (Elghobashi, 1994). In the case of Flow 4, 𝛼0 =
.35 × 10−3, so collisions are still expected to have marginal relevance

o particle-turbulence interaction. However, collisions are still included
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Fig. 1. (a) Voronoi tessellation in 2D for a cluster of particles. (b) Example of the motion of a two-dimensional modified Voronoi tessellation at two subsequent time instants for
a converging cluster. The solid line corresponds to the time step 𝑡𝑘 and the dashed line to 𝑡𝑘+1.
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in the simulation suite because of their importance in determining
the equilibrium distribution of particles by counteracting the near-wall
accumulation due to turbophoresis (Li et al., 2001; Vreman, 2007).

All simulation cases use the same flow domain and boundary con-
ditions. The channel dimensions are 4𝜋𝛿 × 2𝛿 × (4∕3)𝜋𝛿 (where 𝛿 = 2
cm), with periodic boundary conditions in 𝑥 and 𝑧, and smooth, no-slip
walls in 𝑦. A grid resolution of [𝑁𝑥, 𝑁𝑦, 𝑁𝑧] = [280, 140, 140] was used
to resolve the fluid turbulence at reasonable computational cost. The
computational grid is stretched in the wall-normal direction using the
hyperbolic tangent stretching function from Bose (2012), Eq. (2).11.
The grid is uniform in homogeneous directions. For the single-phase
baseline case, there are 23 grid points below 𝑦+ = 10, and the centreline
grid resolution is [𝛥𝑥+, 𝛥𝑦+, 𝛥𝑧+] = [10.5, 9.1, 7.0].

A constant time step was used for each simulation case, based on
the viscous stability condition, such that for all cases 𝛥𝑡+ ≤ 9 × 10−3.
For the statistics reported in the following sections, all simulation cases
were run until a steady state was reached. Then, simulations were
continued for a minimum of 5 flow-through times. Eulerian statistics
of time-averaged quantities were obtained by averaging continuously
throughout this period, as well as over homogeneous directions. The
PDFs of divergence, curl, and helicity were computed from 10 snap-
shots evenly distributed during the averaging time. Eulerian PDFs were
obtained using the same differential operators and grid as the simula-
tion. Lagrangian PDFs were computed with the tessellation technique
described in Section 2.2.

2.2. Tessellation and differential analysis of the particle velocity

2.2.1. Voronoi and delaunay tessellation
The Delaunay tessellation of the particle positions represents the

graph such that no particles are inside the circumscribed sphere of any
cells. The dual graph of the Delaunay tessellation defines the Voronoi
tessellation, which has the property that all points inside are closer
to the particle than to the other particles. Fig. 1(a) shows a particle
cluster and the corresponding Voronoi tessellation. We can observe
that when the particles are grouped together the Voronoi cell is small,
and when the particles are dispersed the Voronoi cell is large. For
this reason, small Voronoi cells are characteristic of clusters, and large
4

cells are characteristic of voids. In the following, we use the modified
Voronoi tessellation defined in Maurel-Oujia et al. (2023) which uses
the centre of gravity of the Delaunay cell to define the vertices of
the dual cell 𝐶𝑝, instead of using the circumcentre of the Delaunay
cell as done for the Voronoi tessellation. It was shown by Maurel-
Oujia et al. (2023) that this construction improves the stability of the
numerical method when computing divergence and curl. For computing
the 3D tessellation (Aurenhammer, 1991), we apply the Quickhull
algorithm (Barber et al., 1996) to the particle positions. In order to take
into account the domain walls, the cells corresponding to particles close
to the wall and belonging to the convex hull are altered. Each altered
cell is composed of the vertices of the cell generated by the modified
Voronoi tessellation to which we add the orthogonal projection of these
vertices onto the wall. This procedure also prevents degenerated cells,
i.e. cells whose particle lies outside its tessellation cell. Note that the
number of these modified cells is extremely small: their contribution to
the PDFs is of the order of 10−6–10−7.

2.2.2. Divergence, curl, and helicity
To compute the divergence of the particle velocity (𝒗𝑝), following

he lines of Oujia et al. (2020), Maurel-Oujia et al. (2023), we first
ompute the local number density averaged over a cell 𝐶𝑝, which is the
nverse of the cell volume. Particles satisfy the conservation equation
f the number density 𝑛: 𝐷𝑡𝑛 = −𝑛∇ ⋅ 𝒗, where 𝐷𝑡 = 𝜕𝑡 + 𝒗 ⋅ ∇ is the
agrangian derivative. Considering two subsequent time instants 𝑡𝑘 and
𝑘+1 = 𝑡𝑘+𝛥𝑡 of the modified Voronoi tessellation with time step 𝛥𝑡, we
an determine the volume change. Thus we obtain the divergence of
he particle velocity as

(𝒗𝑝) = −1
𝑛
𝐷𝑡𝑛 ≈ 1

2𝛥𝑡

(

1
𝑉 𝑘+1
𝑝

+ 1
𝑉 𝑘
𝑝

)

(𝑉 𝑘+1
𝑝 − 𝑉 𝑘

𝑝 ), (5)

where 𝑉 𝑘
𝑝 is the modified Voronoi cell volume at 𝑡𝑘. A small timestep

is used to ensure that the divergence is calculated accurately. Across
all the simulation cases, the timesteps used lie in the range 4 × 10−4 <
𝛥𝑡+ < 8 × 10−4. Fig. 1(b) shows the dynamics of a modified Voronoi
cell at two subsequent time instants. We can observe the decrease of
the volume of the cell in the case where the particles are compressed,
which corresponds to a convergence of the particle velocity (negative
divergence).

Similarly, the curl of the particle velocity can be defined by com-

puting the circulation of the velocity field of particles over a cell 𝐶𝑝.



International Journal of Multiphase Flow 174 (2024) 104764J.R. West et al.

𝑳
w

𝑳

T
v
e
F
c
e

t
p
t
b
T



a
p
r
i
v

i

c
t
f

2

f
s
a
b

𝑛

n

𝑛

w
𝑙
d

𝐸

w
f
b

𝛷

i
d
p
o
s
s

𝑁

T
f
p

3

c
W
v
i
t
v
i
a
l
i

Each component of the curl can also be expressed as the divergence of
the velocity which has been projected on the plane orthogonal to the
component and rotated in a direction −𝜋∕2 around the vector normal
to the plane (Oujia et al., 2020; Maurel-Oujia et al., 2023). That is, the
curl of the particle velocity (𝒗𝑝) is obtained by

(𝒗𝑝) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥(𝒗𝑝)

𝑦(𝒗𝑝)

𝑧(𝒗𝑝)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝


(

−𝒗⟂𝑝,𝑥
)


(

−𝒗⟂𝑝,𝑦
)


(

−𝒗⟂𝑝,𝑧
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (6)

where 𝒗⟂𝑝,𝑥 = 𝑳𝑥𝒗𝑝, 𝒗⟂𝑝,𝑦 = 𝑳𝑦𝒗𝑝, and 𝒗⟂𝑝,𝑧 = 𝑳𝑧𝒗𝑝. Here, 𝑳𝑥, 𝑳𝑦 and
𝑧 are the rotation matrices around the 𝑥, 𝑦, and 𝑧 axes, respectively,
hich are defined as

𝑥 =
⎛

⎜

⎜

⎝

0 0 0
0 0 −1
0 1 0

⎞

⎟

⎟

⎠

, 𝑳𝑦 =
⎛

⎜

⎜

⎝

0 0 1
0 0 0

−1 0 0

⎞

⎟

⎟

⎠

, and 𝑳𝑧 =
⎛

⎜

⎜

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎟

⎟

⎠

.

(7)

hus, each component of the curl can be obtained by computing the
olume of the cells at time 𝑡𝑘, and the volume of the cells advected by
ach velocity −𝒗⟂𝑝,𝑥, −𝒗⟂𝑝,𝑦 and −𝒗⟂𝑝,𝑧, and then applying them to Eq. (5).
or more details and a thorough validation in the case of a one-way
oupled particle-laden isotropic turbulence, we refer to Maurel-Oujia
t al. (2023).

Having access to the curl of the particle velocity, the helicity of
he particle velocity can be computed. Helicity is defined as the scalar
roduct of vorticity and velocity, and yields geometrical information on
he alignment of both vector quantities. Geometrical statistics can thus
e computed and swirling motion of particle clouds can be quantified.
he relative helicity of the particle velocity is defined as

(𝒗𝑝) =
𝒗𝑝 ⋅ (𝒗𝑝)

‖𝒗𝑝‖2 ‖(𝒗𝑝)‖2
, (8)

nd yields the cosine of the angle between the two vectors at each
article position. The range lies between −1 and +1, corresponding
espectively to anti-alignment and alignment of vorticity and velocity,
.e. strong swirling motion. Two-dimensional motion corresponds to
alues of 0, reflecting orthogonality between vorticity and velocity.

In channel flow, there is both a mean velocity and mean shear,
.e. 𝒗𝑝 = 𝑉𝑥𝒆𝑥 + 𝒗′𝑝 and  = 𝑆𝑧𝒆𝑧 + ′, where 𝑆𝑧 = 𝑑𝑉𝑥∕𝑑𝑦. In

addition, symmetry in the wall-normal direction must be accounted
for. Therefore, when computing statistics of the 𝑧-component of curl,
𝑧 is used in the bottom half of the channel, and its negative is
used in the top half. The data are lumped together to compute PDFs.
Accounting for the mean velocity and shear, helicity can be expressed
as  =

𝑉𝑥𝐶′
𝑥+𝑆𝑧𝑣′𝑧+𝒗

′
𝑝⋅

′

‖𝑉𝑥𝒆𝑥+𝒗′𝑝‖2‖𝑆𝑧𝒆𝑧+′
‖2

. This implies that in channel flow, important
ontributions to helicity come from the alignment of vorticity fluctua-
ions with the streamwise mean velocity, and the alignment of velocity
luctuations with the mean shear.

.3. Fourier spectra of number density fluctuations

The Fourier spectra of number density fluctuations are calculated
or two-dimensional slices in each layer based on the method in Mat-
uda et al. (2014). In this method, an analytical Fourier transform is
pplied to the particle number density in the sliced layer, which is given
y

𝑠(𝒙) =
1
𝑛𝑠0

𝑁𝑝𝑠
∑

𝑚=1
𝛿Dirac

(

𝒙 − 𝒙(𝑚)𝑝

)

, (9)

where 𝑁𝑝𝑠 is the number of particles in the sliced layer. The mean
umber density in the sliced layer is used for the scaling factor 𝑛 .
5

𝑠0 i
The two-dimensional discrete Fourier transform of 𝑛𝑠(𝒙) is then given
by

𝑠̂(𝒌) =
1

𝑁𝑝𝑠

𝑁𝑝𝑠
∑

𝑚=1
exp

(

−𝑖𝒌 ⋅ 𝒙(𝑚)𝑝

)

, (10)

here 𝒌 is the two-dimensional wavenumber vector, i.e., 𝒌 = (𝑙1𝛥𝑘𝑥, 0,
2𝛥𝑘𝑧) for integers 𝑙1 and 𝑙2, 𝛥𝑘𝑥𝛿 = 1∕2, and 𝛥𝑘𝑧𝛿 = 3∕2. The number
ensity spectrum 𝐸𝑛(𝑘) is given by

𝑛(𝑘) =
1
𝛥𝑘

∑

𝑘−𝛥𝑘∕2≤|𝒌|<𝑘+𝛥𝑘∕2
𝛷̂(𝒌), (11)

here 𝛥𝑘 is the wavenumber interval (3/2). 𝛷̂(𝒌) is the spectral density
unction given by 𝛷̂(𝒌) = 𝑛𝑠(𝒌)𝑛𝑠

∗(𝒌). By substituting (10), 𝛷̂(𝒌) is given
y

̂(𝒌) =
⎡

⎢

⎢

⎣

1
𝑁𝑝𝑠

𝑁𝑝𝑠
∑

𝑚=1
cos

(

𝒌 ⋅ 𝒙(𝑚)𝑝

)
⎤

⎥

⎥

⎦

2

+
⎡

⎢

⎢

⎣

1
𝑁𝑝𝑠

𝑁𝑝𝑠
∑

𝑚=1
sin

(

𝒌 ⋅ 𝒙(𝑚)𝑝

)
⎤

⎥

⎥

⎦

2

− 1
𝑁𝑝𝑠

. (12)

The third term on the right-hand side of (12) is introduced to remove
the Poisson noise in the spectrum. The two dimensional Fourier
spectrum of particle number density can be also defined by

𝐸𝑛,2𝐷(𝑘𝑥, 𝑘𝑧) =
𝛷̂(𝒌)

𝛥𝑘𝑥𝛥𝑘𝑧
(13)

Thus the wavenumber distribution of the particle number density can
be studied in the different planes of motion and the flow anisotropy
can be assessed.

2.4. Collision rate

The collision rate is calculated by counting the number of collisions
that occur in a given flow region (viscous sublayer, buffer layer, and log
layer), and dividing by the runtime of the simulation and the volume
of the region. Initialising the simulation from each of the ten snapshots
used in this study for the Lagrangian statistics, collisions were counted
for the subsequent 1,000 timesteps. Averaging the ten integration
periods together, this amounts to at least 50 viscous timescales for each
simulation case.

Using the spherical formulation proposed by Wang et al. (2000), the
particle collision rate 𝑁𝑐 can be expressed as

𝑁𝑐 = 𝜋𝐷2
𝑝𝑛

2𝑔(𝐷𝑝)⟨|𝑤𝑟|⟩, (14)

n which 𝑔(𝐷𝑝) is the radial distribution function at contact, and ⟨|𝑤𝑟|⟩

enotes an ensemble average of the relative radial velocity between
articles. 𝑁𝑐 is non-dimensionalised by the number density averaged
ver the appropriate flow region squared and the particle diameter
quared, and the friction velocity is used as a representative velocity
cale.

̃𝑐 =
𝑁𝑐

𝑛2𝐷2
𝑝𝑢𝜏

= 𝜋𝑔(𝐷𝑝)⟨|𝑤+
𝑟 |⟩. (15)

his non-dimensionalisation depends only on the radial distribution
unction and distribution of relative velocities, so it conveys how likely
articles are to collide irrespective of the number density.

. Results

In this section, we first present Eulerian statistics of the fluid-phase
hannel flow data and then present the Lagrangian particle statistics.
e analyse results of divergence, curl, and helicity of the particle

elocity as a function of Stokes number 𝑆𝑡+, mass loading 𝜙0, and
n different flow regions. Here, the channel flow is broken up into
hree regions based on the wall-normal distance. For this purpose, the
iscous sublayer is defined as the region 𝑦+ = [0, 5], the buffer layer
s defined as 𝑦+ = [5, 30] and the logarithmic (log) layer is defined
s 𝑦+ = [50, 𝑅𝑒𝜏 ]. Strictly speaking, this definition includes the outer
ayer as well, but the particle clustering observed in these two regions
s fairly similar, as evidenced by similarities in PDFs of Voronoi volumes
n Nilsen et al. (2013).
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Fig. 2. (a) Mean streamwise fluid velocity, 𝑢+, as a function of wall-normal distance, 𝑦+, for various mass loadings and Stokes numbers, as well as without particles. (b) Local
ean mass loading. (c) Fluid phase turbulent kinetic energy (TKE). (d) Fluid phase Reynolds shear stress (𝑢′𝑣′). The legend in (b) applies to all sub-figures.
Fig. 3. PDF of fluid vorticity, normalised by the viscous time scale, for different mass loadings with 𝑆𝑡+ = 7, in the (a) viscous sublayer, (b) buffer layer and (c) log layer. The
ine colour indicates the component of the vorticity, and the line style indicates the mass loading.
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.1. Carrier fluid statistics

In four-way coupled turbulent channel flow, particles alter the fluid
elocity, both in the mean and fluctuations. In addition, particles tend
o accumulate near the channel walls due to turbophoresis (Reeks,
983; Marchioli and Soldati, 2002). Fig. 2 shows the degree of these
hanges in time-averaged quantities, depending on the mass loading
nd Stokes number. Increasing mass loading decreases the slope of 𝑢+
n the log layer, due to the additional inertia added by particles. Stokes
umber has less of an effect on the log layer slope, but adds an offset,
ue to thickening of the viscous sublayer. Fig. 2(b) shows the local
ass loading normalised by the total mass loading, which peaks very

lose to the wall due to turbophoresis. As mass loading is increased,
ollisions are more frequent, disrupting the tendency to accumulate
6

a

ear the wall. At lower values of 𝜙0, this results in stronger gradients in
ass loading through the viscous sublayer, and a greater difference in
ass loading from near-wall to centreline. In terms of turbulence, the

luid phase turbulent kinetic energy (TKE), shown in 2(c), is attenuated
lightly as mass loading is increased, and the fluid Reynolds stress,
hown in 2(d), is attenuated strongly. This is due to an attenuation
f the pressure-strain term in the TKE budget, which prevents transfer
f energy from streamwise fluctuations to other directions, making the
eynolds stress more anisotropic (Li et al., 2001). Within the same
ass loading (𝜙0 = 1), the effect of increasing Stokes number is to
ecrease the fluid phase Reynolds stress and increase the fluid-phase
KE up to a point. This is due to the enhancement of streamwise
elocity fluctuations and attenuation of wall-normal fluctuations. Lee
nd Lee (2015) also observed the attenuation in Reynolds stress as 𝑆𝑡+
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f

Fig. 4. PDF of fluid vorticity, normalised by the viscous time scale, for a range of Stokes numbers with 𝜙0 = 1. Data for small Stokes numbers: (a) viscous sublayer, (b) buffer
layer and (c) log layer. Data for large Stokes numbers: (d) viscous sublayer, (e) buffer layer and (f) log layer. The line colour indicates the component of the vorticity, and the
line style indicates the Stokes number.
Fig. 5. PDF of fluid relative helicity for various mass loadings with 𝑆𝑡+ =, in the (a) viscous sublayer, (b) buffer layer and (c) log layer. Note that the 𝑦-axis ranges for each PDF
are different.
is increased at 𝜙0 = 0.3, but not the enhancement in streamwise velocity
luctuations observed here (at 𝜙0 = 1). Zhao et al. (2013) observed en-

hancement in streamwise velocity fluctuations with increasing 𝑆𝑡+, but
mass loading was increased at the same time. Therefore, it seems that
the degree of enhancement or attenuation in TKE may be dependent on
the specific combination of Stokes number and mass loading.

Next, we consider the distribution of the fluid vorticity in Fig. 3,
which shows PDFs of the three components of the fluid vorticity
normalised by the viscous time scale, + = 𝜏𝑣𝑖𝑠𝑐, in the different flow
regions, for the different mass loadings considered, including the no
particle case (𝜙0 = 0). This shows the influence of the particle feedback
force, which increases in proportion to mass loading. In the viscous
sublayer - Fig. 3(a) - the 𝑧-component of curl is centred around −1 due
to the mean shear which dominates this region. The distribution of +
7

𝑧

is also highly skewed, and events with +
𝑧 > 0, i.e. temporary reversal

of mean shear, are extremely unlikely. The +
𝑥 and +

𝑦 distributions
are nearly symmetric, as expected from the flow geometry. Moving
towards the log layer, the distribution of +

𝑧 becomes more symmetric,
and the three components more similar, indicating the greater isotropy
of turbulence in the log layer. Neither +

𝑦 nor +
𝑧 is significantly affected

by mass loading. However, +
𝑥 , which corresponds to the elongated

quasi-streamwise vortices found in the near-wall region of channel
flow (Robinson, 1991), is strongly attenuated as 𝜙0 increases. While
a small degree of anisotropy is expected in the log layer for channel
flow at low Reynolds number (Andersson et al., 2015), the extreme
attenuation of +

𝑥 relative to the other two components is a unique
feature of particle-laden wall turbulence. The weakening of quasi-
streamwise structures by particles (Dritselis and Vlachos, 2008; Lee
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Fig. 6. PDF of fluid relative helicity for various Stokes numbers with 𝜙0 = 1, in the (a) viscous sublayer, (b) buffer layer and (c) log layer. Note that the 𝑦-axis ranges for each
DF are different.
nd Lee, 2015) and of coherent structures in general (Vreman, 2007)
as been observed in prior studies. As 𝜙0 is increased, particle-laden
all turbulence becomes more anisotropic, dominated by streamwise
elocity fluctuations (Li et al., 2001). These streamwise velocity fluc-
uations can contribute to vorticity fluctuations in +

𝑦 and +
𝑧 , but not

+
𝑥 , resulting in the selective attenuation.

The effect of 𝑆𝑡+ on the PDFs of fluid vorticity is shown in Fig. 4(a–
) for small 𝑆𝑡+ and Fig. 4(d–f) for large 𝑆𝑡+. For small 𝑆𝑡+, the
ariation in 𝑆𝑡+ has little effect on +

𝑦 , and +
𝑥 is attenuated more

s 𝑆𝑡+ is increased, much like the variation in mass loading. This
an again be explained by the increasing anisotropy of the Reynolds
tress with 𝑆𝑡+, which was also noted by Lee and Lee (2015). +

𝑧
ariance is somewhat enhanced in the log layer, perhaps due to the
tronger streamwise velocity fluctuations with increasing 𝑆𝑡+. As 𝑆𝑡+

ncreases beyond 𝑆𝑡+ = 7, all three curl components are attenuated,
nd +

𝑧 is preferentially attenuated at negative values, resulting in a
arrower, less skewed distribution as particle motions (and the drag
orces particles exert) become more random, and less determined by
ddies. The effect of this change on the fluid phase is to weaken
otational motion (i.e. eddies) at large Stokes numbers.

Finally, the fluid-phase relative helicity distributions are plotted in
ig. 5 for the effect of 𝜙0 and Fig. 6 for the effect of 𝑆𝑡+. The helicity

distributions are all symmetric with zero mean due to the problem
geometry, but they are strongly affected by flow region. As previously
noted by Rogers and Moin (1987), the probability of having zero
helicity is highest in the viscous sublayer because the near-wall vor-
ticity is dominated by the mean shear (𝑑𝑢∕𝑑𝑦), which is orthogonal to
the streamwise velocity. The helicity distribution becomes flatter with
increasing wall distance, i.e. the flow becomes more three-dimensional,
exhibiting swirling motions absent near the wall. Across all three layers,
the effect of increasing the mass loading or Stokes number is to make
the flow more two-dimensional. In the viscous sublayer and buffer
layer, this can be interpreted as a consequence of the low-speed streaks
becoming more stable and persistent, due to two-way coupling. In the
log layer, for sufficiently small 𝜙0 and 𝑆𝑡+, there are two peaks at
moderate values of helicity. Previous observations from HIT (Oujia
et al., 2022) have shown peaks at (𝒗𝑝) = ±1 for small Stokes number,
indicating a greater probability of swirl than non-swirl. The peaks at
moderate values observed here may be due to the increased anisotropy
of particle-laden wall turbulence, which limits how three-dimensional
its coherent structures can be. However, we can conjecture that the
curves obtained at 𝑆𝑡+ = 1 and 𝜙0 = 0.1 represent a transition from a
concave to convex PDF, and that in channel flows with small enough
𝑆𝑡+ and 𝜙0, and high enough Reynolds number, the curves would
become convex as observed in Oujia et al. (2022).
8

3.2. Particle phase Lagrangian statistics

3.2.1. Influence of Stokes number
In this section we consider the effect of Stokes number on cluster

dynamics by examining the particle velocity divergence, curl, and
helicity for 𝑆𝑡+ = [1 − 60]. It is important to underscore that all cases
considered in this section have the same mass loading, 𝜙0 = 1, at
which strong two-way coupling effects between the phases, as well
as significant changes in the turbulence anisotropy, are expected, as
described in Section 3.1. We plot particle positions coloured by particle
velocity divergence in Fig. 7 for 𝑆𝑡+ = 3 and 𝑆𝑡+ = 60. For 𝑆𝑡+ = 3,
shown in Fig. 7(a–c), the particles in the viscous sublayer organise into
elongated chain-like structures (as found by many others, e.g. Marchioli
and Soldati, 2002). The effect of particles on the low-speed streaks,
as well as other flow structures, is shown with visualisations in Ap-
pendix. Clusters of particles with large positive and negative divergence
are sparsely distributed, but the majority of particles have near-zero
divergence (green colour), indicating that most particles are simply
transported by the flow. In the clusters with non-zero divergence,
positive and negative divergence are intermixed, suggesting collisions,
which increase the energy of uncorrelated particle motions (Vance
et al., 2006) and have been observed to increase in frequency closer to
the wall (Li et al., 2001; Kuerten and Vreman, 2016). This fits with the
observation of Fong et al. (2019) that the velocities of particles near
the wall (𝑦+ = [17 − 34] in their study) have a stronger uncorrelated
component relative to those in the centreline.

Thin, elongated void regions, indicated by white space, appear
between the particle streaks. In the buffer layer, clusters of particles
with negative and positive divergence are more densely distributed,
but they are less elongated. The more intense convergence/divergence
in the buffer layer is likely due to the increased strength of velocity
fluctuations there, as shown in Fig. 2(c). In the log layer, the density
of clusters with non-zero divergence is decreased, and their structures
are less directional, bearing a strong resemblance to previous results
in HIT for small Stokes numbers (Oujia et al., 2020). For 𝑆𝑡+ =
60, shown in Fig. 7(d–f), the particle distributions and their velocity
divergence are starkly different. The width of the streaky structures
has greatly increased, matching the structure of the streamwise ve-
locity field (Appendix, Fig. 26(d, e)). Throughout the layers, a much
greater proportion of particles have non-zero divergence, indicating
that particles are moving more independently of the surrounding fluid.
Finally, we observe preferential concentration in the log layer for
𝑆𝑡+ = 60, but only at large scales, as expected because of large particle
inertia. In addition, there is a great deal of convergence/divergence
intermixed throughout all layers for 𝑆𝑡+ = 60, indicating a greater
degree of spatially uncorrelated particle motions, as is expected for

greater particle inertia (Février et al., 2005).
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Fig. 7. Particle positions coloured by divergence in wall-parallel slices, for (a) viscous sublayer, 𝑆𝑡+ = 3, 𝜙0 = 1; (b) buffer layer, 𝑆𝑡+ = 3, 𝜙0 = 1; (c) log layer, 𝑆𝑡+ = 3, 𝜙0 = 1;
(d) viscous sublayer, 𝑆𝑡+ = 60, 𝜙0 = 1; (e) buffer layer, 𝑆𝑡+ = 60, 𝜙0 = 1; (f) log layer, 𝑆𝑡+ = 60, 𝜙0 = 1. Divergence is normalised by the viscous time scale, and the colour bar is
truncated to emphasise regions of zero divergence. Because of the difference in number density, thinner slices are used to visualise the 𝑆𝑡+ = 3 data. The slices used for 𝑆𝑡+ = 3
are 2.375 ≤ 𝑦+ < 2.625, 11.375 ≤ 𝑦+ < 12.625 and 99.375 ≤ 𝑦+ < 100.625 for viscous sublayer, buffer layer and log layer, respectively. The slices used for 𝑆𝑡+ = 60 are 2 ≤ 𝑦+ < 3,
9.5 ≤ 𝑦+ < 14.5 and 97.5 ≤ 𝑦+ < 102.5 for viscous sublayer, buffer layer and log layer, respectively.
Fig. 8 shows snapshots of particles coloured by the magnitude of
vorticity, using the same snapshots as in Fig. 7. In the viscous sublayer,
this shows that the low-speed streaks where the divergence is near-zero
correspond to low vorticity magnitude, due to the weaker shear in low
speed streaks. Furthermore, the large values of divergence correspond
to the regions of large vorticity magnitude. This trend applies to both
small and large Stokes numbers, and continues into the buffer and log
layers, suggesting that the rotational motion of particle clouds is a key
contributor to divergence and convergence as particles are centrifuged
out of eddies, or adjacent eddies bring clusters together. The vortical
motion of particles in the log layer is similar to what has been observed
for HIT in Oujia et al. (2022).
9

The helicity of the particle velocity is visualised in Fig. 9. Particle
clusters in the log layer exhibit a greater alignment and anti-alignment
of particle velocity and rotation, corresponding to dark red and dark
blue particle regions, respectively. This confirms that particle clusters
are swirling, i.e. their motion is helical. In contrast, in the viscous
sublayer and the buffer layer helical motion is less present, since
vorticity and velocity are more perpendicular there, resulting in two-
dimensional motion of the particles. Stronger swirl is observed in
Fig. 9(c) compared to Fig. 9(f), indicating that the particle motion
becomes more two-dimensional as Stokes number is increased, even in
the log layer.
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Fig. 8. Particle positions coloured by vorticity magnitude in wall-parallel slices, for (a) viscous sublayer, 𝑆𝑡+ = 3, 𝜙0 = 1; (b) buffer layer, 𝑆𝑡+ = 3, 𝜙0 = 1; (c) log layer, 𝑆𝑡+ = 3,
𝜙0 = 1; (d) viscous sublayer, 𝑆𝑡+ = 60, 𝜙0 = 1; (e) buffer layer, 𝑆𝑡+ = 60, 𝜙0 = 1; (f) log layer, 𝑆𝑡+ = 60, 𝜙0 = 1. Thickness of the layers used are defined in Fig. 7.
To characterise the presence of clusters and voids, Fig. 10 shows
the PDFs of modified Voronoi volumes for each flow region and Stokes
number normalised by the mean modified Voronoi volume within each
layer 𝑉 𝑝,𝑙. This normalisation (also used by Nilsen et al., 2013) is used
because the particle number density is different within each layer due
to turbophoresis, so this normalisation facilitates comparison with a
random distribution within each layer. Across all flow regions, there is
clear deviation from a random particle distribution with greater prob-
abilities of both clusters and voids (small and large values of 𝑉𝑝,𝑙∕𝑉 𝑝,𝑙,
respectively). At both very small and very large 𝑆𝑡+, the distribution is
closer to random than at intermediate 𝑆𝑡+, where preferential concen-
tration plays the greatest role. In general, the distribution of clusters
in the viscous sublayer is closer to random than in other regions of the
flow, except for 𝑆𝑡+ = 1, in which the clusters are very close to random
throughout the channel. This is in contrast to Nilsen et al. (2013),
who found that the greatest departure from randomness in the viscous
sublayer. We hypothesise that this difference is due to the effect of
collisions, which cause the particle velocities to become less correlated
(i.e. more random), and which become more frequent the closer a
particle is to the wall (Li et al., 2001; Kuerten and Vreman, 2016). In
10
addition, the significant two-way coupling at 𝜙0 = 1 attenuates the
turbulence that would otherwise preferentially concentrate particles
into clusters and voids. Both collisions and two-way coupling omitted
in Nilsen et al. (2013).

The large modified Voronoi volumes, i.e. voids, depart significantly
from random in all layers, but especially in the viscous sublayer, where
large, elongated voids between the streaks are present. The PDFs be-
come noisy at their right tails due to a lack of samples. The distribution
in the viscous sublayer is the noisiest because of the normalisation
used. Particles are more densely packed in the viscous sublayer due
to turbophoresis, so the average volume in the layer is smaller, shifting
the curve to the right relative to other layers.

Fig. 11 shows the PDFs of particle velocity divergence for the
different Stokes numbers, and Table 2 gives the variance and flatness
values. The divergence data is normalised by the viscous timescale:
+ = 𝜏𝑣𝑖𝑠𝑐. As 𝑆𝑡+ is increased from a small value, the variance of
the particle velocity divergence increases across flow regions, and the
tails of the PDFs become heavier, as observed in HIT (Oujia et al.,
2020). The very large values of flatness in Table 2 reflect the heavy
tails and departure from Gaussianity due to extreme events. In addition,
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Fig. 9. Particle positions coloured by relative helicity in wall-parallel slices, for (a) viscous sublayer, 𝑆𝑡+ = 3, 𝜙0 = 1; (b) buffer layer, 𝑆𝑡+ = 3, 𝜙0 = 1; (c) log layer, 𝑆𝑡+ = 3,
𝜙0 = 1; (d) viscous sublayer, 𝑆𝑡+ = 60, 𝜙0 = 1; (e) buffer layer, 𝑆𝑡+ = 60, 𝜙0 = 1; (f) log layer, 𝑆𝑡+ = 60, 𝜙0 = 1. Thickness of the layers used are defined in Fig. 7.
we note that the flatness shows a non-monotonic trend, peaking at
an intermediate Stokes number. At the tails, the PDFs become noisy,
due to the rarity of particles with extreme values of divergence, which
could be improved by averaging over additional flow snapshots. In the
buffer layer, the variance is greatest, due to the strength of turbulent
velocity fluctuations. This corresponds to the maximum in turbulent
kinetic energy (TKE), which occurs in the range 10 ≲ 𝑦+ ≲ 30 for
the flows considered here (see Fig. 2(c)). In the log layer and to a
lesser extent the buffer layer, these changes eventually saturate: the
increase in variance slows down and the flatness begins to decrease,
because the TKE also saturates. This saturation occurs around 𝑆𝑡+ = 7,
which corresponds to 𝑆𝑡log𝜂 = 0.54. Results from HIT show a similar
transition at 𝑆𝑡𝜂 = 1 (Oujia et al., 2020), which is remarkably close
considering the differences in turbulence anisotropy, Reynolds number,
11
and between one-way and four-way coupled simulations. By contrast,
the variance of divergence continues to increase in the viscous sublayer,
likely due to the increasingly ballistic motion of very heavy particles.

The particle collision rate is plotted in Fig. 12. In general, the
collision rate is highest in the buffer layer, which is somewhat ex-
pected from the larger variance of the particle velocity in that region.1
In the buffer layer and log layer, the collision rate increases with
Stokes number, which reflects the trends observed by Wang et al.

1 Kuerten and Vreman (2016) found that collisions monotonically increased
close to the wall in their study of four-way coupled turbulent channel flow, us-
ing used a normalisation based on viscous scales, which is strongly influenced
by number density, which increases near the wall due to turbophoresis.
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𝜙

l

Fig. 10. PDF of modified Voronoi volume as a function of flow region and Stokes number, normalised by the mean modified Voronoi volume within each layer for (a) 𝑆𝑡+ = 1, 3, 7;
0 = 1, and (b) 𝑆𝑡+ = 7, 20, 60; 𝜙0 = 1. The dashed-dotted line represents the volume distribution for randomly distributed particles.
Fig. 11. PDF of particle velocity divergence, normalised by the viscous time scale, for various Stokes numbers with 𝜙0 = 1, in the (a) viscous sublayer, (b) buffer layer, and (c)
og layer.
Fig. 12. Collision rate non-dimensionalised according to Eq. (15) for various Stokes
numbers with 𝜙0 = 1.
12
Table 2
Variance (left) and flatness (right) of the particle velocity divergence normalised by
the viscous time scale for different layers and Stokes numbers 𝑆𝑡+ with 𝜙0 = 1.
𝑆𝑡+ Viscous Buffer Log 𝑆𝑡+ Viscous Buffer Log

1 7.93 × 10−5 2.25 × 10−4 2.23 × 10−5 1 1.26 × 102 0.44 × 102 0.30 × 102

3 4.26 × 10−4 1.88 × 10−3 2.10 × 10−4 3 9.91 × 102 2.73 × 102 8.39 × 102

7 1.79 × 10−3 9.78 × 10−3 2.47 × 10−3 7 11.8 × 102 2.77 × 102 3.49 × 102

20 1.23 × 10−2 1.91 × 10−2 6.04 × 10−3 20 0.77 × 102 0.51 × 102 1.07 × 102

60 4.35 × 10−2 3.25 × 10−2 7.06 × 10−3 60 0.18 × 102 0.17 × 102 0.33 × 102

(2000). Surprisingly, collisions in the viscous sublayer appear to be
suppressed at intermediate 𝑆𝑡+. This may be a consequence of two-way
coupling, since the local mass loading is higher in the viscous sublayer
at intermediate 𝑆𝑡+ (see Table 1).

Next, we address the particle velocity curl to characterise the vorti-
cal motion of clusters. Figs. 13(a–c) and 13(d–f) show PDFs of the three
components of the curl of particle velocity in the different flow regions
for small and large Stokes numbers, respectively. Like the divergence,
curl has been normalised by the viscous timescale: + = 𝜏𝑣𝑖𝑠𝑐. The
particle-phase PDFs have heavier tails than their fluid counterparts

in Fig. 4, indicating greater probability of extreme values, but they
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Fig. 13. PDF of particle velocity curl, normalised by the viscous time scale, for a range of Stokes numbers with 𝜙0 = 1. Data for small Stokes numbers: (a) viscous sublayer, (b)
buffer layer and (c) log layer. Data for large Stokes numbers: (d) viscous sublayer, (e) buffer layer and (f) log layer. The line colour indicates the component of the curl, and the
line style indicates the Stokes number.
Fig. 14. PDFs of the relative helicity (cosine of the angle between particle velocity and vorticity) (𝒗𝑝) of the particles for various Stokes numbers with 𝜙0 = 1, in the (a) viscous
ublayer, (b) buffer layer, and (c) log layer. Note that the 𝑦-ranges differ by orders of magnitude.
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how similar trends in terms of asymmetry and anisotropy, due to
wo-way coupling. The extreme values of vorticity are associated with
hort-lived, small-scale vortices. We hypothesise that such events are
ore likely in the particle phase because there is not a mechanism

ike viscosity to preferentially attenuate them, as there is in the fluid.
imilar to divergence, the variance of particle velocity curl initially
ncreases as 𝑆𝑡+ increases, but then saturates in the log layer for larger
𝑡+. This can be justified because intense fluctuations of fluid vorticity
re short-lived, and the large particle inertia prevents the particles from
ollowing the streamlines of intense eddies. In the viscous sublayer, the
ffect on +

𝑧 is particularly striking. As 𝑆𝑡+ is increased, the distribution
f +

𝑧 remains offset with a mean value of −1, but it becomes more
ymmetrical, with significant distributions at +

𝑧 > 0. This broadening
f the PDF can be explained by the enhancement of the ballistic motions
13
f inertial particles; with increasing inertia, the trajectories tend to
ecome more independent of the streamlines of the carrier fluid.

Fig. 14 shows the PDFs of the particle helicity for various Stokes
umbers. Similar to the fluid helicity, the particle helicity indicates
hat the motions of the particles become more two-dimensional ap-
roaching the wall. In the log layer, the distribution at large 𝑆𝑡+ is
oncave, and it flattens as 𝑆𝑡+ is decreased. The peaks at moderate
alues of helicity observed for 𝑆𝑡+ = 1 suggest that the PDF may
e transitioning from concave to convex, as observed in Oujia et al.
2022). Interestingly, in the viscous sublayer, a non-monotonic trend
s observed, in contrast to the fluid helicity (Fig. 6). Initially the
elicity distribution narrows as 𝑆𝑡+ increases, but then it suddenly
roadens, indicating that the particle motion is becoming more three-
imensional and independent of the fluid phase. Since the swirl of the
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Fig. 15. Particle positions coloured by divergence in wall-parallel slices, for (a) viscous sublayer, 𝜙0 = 0.1, 𝑆𝑡+ = 7; (b) buffer layer, 𝜙0 = 0.1, 𝑆𝑡+ = 7; (c) log layer, 𝜙0 = 0.1,
𝑆𝑡+ = 7; (d) viscous sublayer, 𝜙0 = 0.4, 𝑆𝑡+ = 7; (e) buffer layer, 𝜙0 = 0.4, 𝑆𝑡+ = 7; (f) log layer, 𝜙0 = 0.4, 𝑆𝑡+ = 7. Divergence is normalised by the viscous time scale, and the
colour bar is truncated to emphasise regions of zero divergence. The slices used for visualisation are 2 ≤ 𝑦+ < 3, 9.5 ≤ 𝑦+ < 14.5 and 97.5 ≤ 𝑦+ < 102.5 for viscous sublayer, buffer
layer, and log layer, respectively.
flow is reduced as 𝑆𝑡+ increases, this increase in helicity in the viscous
sublayer is likely due to the particle motion transitioning away from
organised, but attenuated turbulent motion, to slightly more ballistic
motion driven by particle inertia. Fig. 12 shows that the collision rate
increases from 𝑆𝑡+ = 7 to 𝑆𝑡+ = 60, so it is possible that collisions may
also play a role. The expected PDF for random ballistic particle motion
is a uniform distribution, since all values of vorticity and velocity
become equally likely.

Since the simulations used in this work are all four-way coupled,
there is some uncertainty as to what extent the trends due to changing
14

Stokes number are due collisions, the turbulence acting on the particles,
or to the particle feedback force, which modulates the turbulence. How-
ever, given the striking similarities between the logarithmic layer and
buffer layer results with previous studies of one-way coupled HIT (Oujia
et al., 2020, 2022), it is expected that the main driver of the observed
trends is the same preferential concentration mechanism present with-
out the particle feedback force or collisions. Furthermore, the volume
fractions of the simulations considered are small enough that it is
unlikely that collisions are the dominant effect (Elghobashi, 1994).
In the viscous sublayer, the effect of Stokes number on divergence,
curl, and helicity is different than in the logarithmic layer, and so

comparison with one-way coupled simulations would be illuminating to
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Fig. 16. PDF of particle velocity divergence, normalised by the viscous time scale, for three different mass loadings with 𝑆𝑡+ = 7, in the (a) viscous sublayer, (b) buffer layer, and
(c) log layer.
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Fig. 17. Collision rate non-dimensionalised according to Eq. (15) for various mass
loadings with 𝑆𝑡+ = 7.

npack the effect of the particle feedback force on clustering, rotation,
nd swirl in that region.

.2.2. Influence of mass loading
Next, we examine the effect of mass loading on particle phase

agrangian statistics. To gain a qualitative understanding of clustering
nd particle velocity divergence for different mass loadings, Fig. 15
hows particle positions coloured by divergence in wall-parallel slices.
n the viscous sublayer, particles are organised into low-speed streaks
ith near-zero divergence, similar to the particles in Fig. 7(a), but the

treaks are more distinct because the number density is lower. In the
uffer layer, the streaky structures are still visible, but the prevalence
f convergence and divergence is greatly increased. Finally, in the log
ayer, the clustering becomes similar to that of moderate Stokes number
articles in HIT (Oujia et al., 2020). At larger mass loading, there is
greater proportion of zero-divergence particles, particularly in the

iscous sublayer and buffer layers. As 𝜙0 is increased, the particles are
ore densely packed, but the structures remain qualitatively similar.
nly 𝜙0 = 0.1, 0.4 are shown, but the same qualitative trend continues

o 𝜙0 = 1.
PDFs of particle velocity divergence for each region are shown in

ig. 16, and variance and flatness values are reported in Table 3. The
ariance is largest in the buffer layer across all flow cases, as expected
ecause the near-wall peak of the fluid turbulent kinetic energy occurs
n this region. In the buffer and log layers, the tails of the PDFs become
15

lightly heavier as mass loading is increased. This may be due in part p
Table 3
Variance (left) and flatness (right) of the particle velocity divergence normalised by
the viscous time scale for different layers and mass loadings 𝜙0 with 𝑆𝑡+ = 7.
𝜙0 Viscous Buffer Log 𝜙0 Viscous Buffer Log

0.1 6.06 × 10−3 10.96 × 10−3 2.15 × 10−3 0.1 0.70 × 102 0.56 × 102 1.21 × 102

0.4 2.45 × 10−3 12.12 × 10−3 2.54 × 10−3 0.4 7.21 × 102 1.15 × 102 3.91 × 102

1.0 1.79 × 10−3 9.78 × 10−3 2.47 × 10−3 1.0 11.8 × 102 2.77 × 102 3.49 × 102

to the larger number of particles as 𝜙0 is increased, which offer more
ampling to capture strong convergence/divergence, which occur less
requently, as described by Oujia et al. (2020), appendix A. This issue
ffects the viscous sublayer least, because turbophoresis makes the
umber density similar there, despite the overall change in mass load-
ng. The variance of the divergence in the viscous sublayer decreases
s 𝜙0 increases, which is likely due to the weaker velocity fluctuations
s a result of two-way coupling. This would be expected from the
heory of Esmaily and Mani (2020), who found that in general, the
ate of expansion/contraction of particle clouds (i.e. their divergence)
ncreases with the amplitude of the oscillations of the fluid flow. The
reater variance for 𝜙0 = 0.1 can be seen in Fig. 15(a) and 15(d), where
greater proportion of particles have zero divergence (green) at the

igher mass loading. The changes to particle velocity divergence in the
uffer and log layer due to mass loading are less substantial, probably
ue to stronger velocity fluctuations relative to the viscous sublayer,
hough there may be a weak maximum in variance at 𝜙0 = 0.4, as
hown in Table 3. The collision rate as a function of mass loading is
hown in Fig. 17. As previously noted, the collision rate is highest in the
uffer layer, as expected based on the variance of the particle velocity
ivergence. The collision rate decreases with mass loading across all
low regions, reflecting a general attenuation of turbulence as mass
oading increases.

The values of flatness in Table 3 are much larger than 3, reflecting
he strong intermittent behaviour in all cases and departure from Gaus-
ianity. Moreover, the values increase with 𝜙0, except for the log-layer
here the impact of 𝜙0 is much weaker.

Fig. 18 shows the three components of particle velocity curl across
he flow regions. Like the previously shown PDFs of curl, +

𝑧 is asym-
etric with a negative mean, while +

𝑥 and +
𝑦 are nearly symmetric.

eavier tails as 𝜙0 is increased are again observed, possibly due to
ncreased sampling at larger 𝜙0. A significant change due to mass
oading is observed in the viscous sublayer, where the larger mass
oading shows a narrower PDF with strongly decreased likelihood of
+
𝑧 > 0, i.e. locally reversed flow. Narrowing of the distribution is
xpected based on the tendency of particles to stabilise the near-wall
treaks and attenuate velocity fluctuations. Similar to divergence, the

article velocity curl in 𝑥 and 𝑦 directions has the greatest variance in
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Fig. 18. PDF of three components of curl, normalised by the viscous time scale, for three different mass loadings with 𝑆𝑡+ = 7, in the (a) viscous sublayer, (b) buffer layer, and
(c) log layer. The line colour indicates the component of the curl, and the line style indicates the Stokes number.
Fig. 19. PDFs of the relative helicity (𝒗𝑝) of the particles for different mass loadings with 𝑆𝑡+ = 7, in the (a) viscous sublayer, (b) buffer layer and (c) log layer. Note that the
𝑦-ranges differ by orders of magnitude.
Fig. 20. Particle positions coloured by relative helicity in wall-parallel slices, for (a) viscous sublayer, 𝜙0 = 0.1, 𝑆𝑡+ = 7; (b) viscous sublayer, 𝜙0 = 0.4, 𝑆𝑡+ = 7.
the buffer layer, which suggests that active formation and annihilation
of clusters is associated with stronger vortical motions. As in the fluid
vorticity PDFs shown in Fig. 3, +

𝑥 has a smaller variance than +
𝑦 and

+
𝑧 . Both fluid and particle vorticity show evidence of anisotropy due

to two-way coupling. The fact that the curl is most isotropic in the
16
log layer is also reflected in the particle visualisations in Fig. 15(c,
f), which are qualitatively similar to previous results from HIT (Oujia
et al., 2020).

Fig. 19 shows PDFs of the relative helicity of particle velocity for
different mass loadings in the different layers. Much like the other
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Fig. 21. Fourier spectra of particle number density in 2D slices in (a) viscous sublayer, (b) buffer, and (c) log layers for various Stokes numbers with 𝜙0 = 1. The spectra and the
wavenumber are normalised by the viscous length scale. In (c), the peak locations obtained with a five-point moving average are indicated with arrows.
i
e
T
m
o
b
a
o
n
t
G
a
l
w
a
s

Fig. 22. Wavenumber of maximum in spectra of particle number density fluctuations
as a function of Kolmogorov Stokes number for HIT (Matsuda et al., 2014) and the
logarithmic layer in the present dataset.

results, the particle helicity is more likely to be zero the closer particles
get to the wall. The effect of mass loading in the buffer layer and
log layer is small, but in the viscous sublayer, the particle helicity
distribution is significantly flatter with 𝜙0 = 0.1. This indicates that
the particle motion is more three-dimensional in this case. While it
might be expected that this is due to a smaller degree of two-way
coupling, this interpretation is not satisfying because the fluid helicity
is much less, indicating that the particles are behaving somewhat
independently of the fluid in this case. A similar observation was made
about the large 𝑆𝑡+ particles, and there is also a similarity in the PDF
of +

𝑧 , which is significantly more symmetric at 𝜙0 = 0.1 than large
mass loadings. However, the particle distribution for 𝜙0 = 0.1 is not
random, but organised into streaky structures, suggesting a different
cause than particles becoming ballistic and independent of the fluid,
as happens at large 𝑆𝑡+. This interpretation is confirmed by examining
the visualisation of particles coloured by helicity in the viscous sublayer
in Fig. 20. At 𝜙0 = 0.1, the distribution of helicity is coherent, unlike
the random speckles of helicity seen in Fig. 9(d) for 𝑆𝑡+ = 60. The
fact that Fig. 20(a, b) are both mostly green (zero helicity) underscores
that particle swirling motion in the viscous sublayer is weak regardless
of mass loading, and that the sharp apparent difference in PDFs in
Fig. 19(a) is influenced by the logarithmic scale, and corresponds
to slightly more intense, coherent helicity at 𝜙0 = 0.1. A possible
explanation is that the reduced two-way-coupling at small 𝜙0 allows
for the transfer of more intensely swirling particle clusters from the
buffer layer into the viscous sublayer. This is suggested by the fact that
the helicity distribution in the viscous sublayer for 𝜙0 is quantitatively
much closer to the distributions in the buffer layer than those in the
viscous sublayer at other mass loadings.

Because the simulations used in this work are all four-way coupled,
both the particle feedback force and collisions may play a role in
17

explaining the trends observed as mass loading is increased. However, f
given that the largest volume fraction across the mass loading cases
is 𝛼0 = 1.35 × 10−4, it is unlikely that collisions play significant role
in the motion of particle clouds (Elghobashi, 1994). In addition, one-
way coupled simulations would yield similar results to the lowest mass
loading case (𝜙0 = 0.1), since the turbulence would not be affected
by the presence of additional particles, and the Stokes number is
constant across these simulations (𝑆𝑡+ ≈ 7). Therefore, the trends ob-
served as mass loading is varied should primarily be due to turbulence
modulation from two-way coupling.

3.3. Fourier spectra of number density fluctuations

The preceding observations on divergence, curl, and helicity have
shown how these quantities are attenuated or enhanced in different
flow regions. However, in the PDFs presented, scale information has
been lumped together. In this section, spectra of particle number den-
sity fluctuations are examined to ascertain which scales of clustering
may contribute to the changes observed so far. As in the other sections,
the domain is decomposed into wall-parallel slices to characterise the
effect of flow region. The location and thickness of the slices are the
same as the visualisation in Fig. 15, i.e. 2 ≤ 𝑦+ < 3, 9.5 ≤ 𝑦+ < 14.5
and 97.5 ≤ 𝑦+ < 102.5 for viscous sublayer, buffer layer, and log layer,
respectively. Each spectrum is averaged over the same 10 snapshots
used to compute divergence, curl, and helicity.

The Fourier spectra of number density fluctuations for simulations
at different 𝑆𝑡+ are shown in Fig. 21. The spectra are normalised by the
viscous length scale, i.e., 𝐸+

𝑛 (𝑘
+) = 𝐸𝑛(𝑘+∕𝑙𝑣𝑖𝑠𝑐 )∕𝑙𝑣𝑖𝑠𝑐 and 𝑘+ = 𝑘𝑙𝑣𝑖𝑠𝑐 .

In the log layer, the Stokes number dependence is similar to that for
HIT. Initially as 𝑆𝑡+ is increased, the spectra shift vertically while the
peak location remains at 𝑘+ ≈ 0.08, which corresponds to 𝑘𝜂 ≈ 0.2 (𝜂
s the Kolmogorov scale), i.e. slightly smaller than Kolmogorov-scale
ddies, which dominate clustering behaviour for small Stokes number.
hen for sufficiently large Stokes number (𝑆𝑡+ > 7), the spectra
ove horizontally to smaller wavenumbers. The increased prevalence

f large-scale clusters in the log layer for 𝑆𝑡+ = 60 can be clearly seen
y comparing the visualisations in Fig. 7(c, f). This shift is expected
t 𝑆𝑡𝜂 = 1 per Matsuda et al. (2014), and in the present data, it is
bserved around 𝑆𝑡log𝜂 ≈ 0.5. A comparison of peak location vs. Stokes
umber normalised by Kolmogorov scale is shown in Fig. 22 for both
he present log layer data and the HIT data of Matsuda et al. (2014).
iven the differences in Reynolds number, two-way coupling, and flow
nisotropy, we find the quantitative similarity striking. As the peak
ocation begins to shift significantly, the slope of the spectra at high
avenumbers in the log layer also becomes more negative in qualitative
greement with the results from Matsuda et al. (2014). This change in
lope corresponds to the reduction in fine-scale clusters observed going

+ +
rom 𝑆𝑡 = 3 to 𝑆𝑡 = 60 in Fig. 7(c, f).
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Fig. 23. Fourier spectra of particle number density on 2D slices in (a) viscous sublayer, (b) buffer, and (c) log layers for various mass loadings with 𝑆𝑡+ = 7. The spectra and the
wavenumber are normalised by the viscous length scale. In (c), the peak locations obtained with a five-point moving average are indicated with arrows.
Fig. 24. 2D Fourier spectra of particle number density on 2D slices in (a) viscous sublayer, (b) buffer, and (c) log layers for 𝜙0 = 1.0 and 𝑆𝑡+ = 7. The spectra and the wavenumber
are normalised by the viscous length scale. Areas appearing in black indicate regions where there is no particle distribution.
In the buffer layer, a similar horizontal shift to larger scales as 𝑆𝑡+

is increased can also be observed, again corresponding to the increased
prevalence of large-scale clusters and reduction in small-scale clusters
seen in Fig. 21(b,c). In the viscous sublayer, the spectra are noisier,
particularly at large 𝑆𝑡+, because the particles become more randomly
distributed, and the periodogram, used to estimate the spectrum, is
an inconsistent estimator due to the presence of oscillations (Priestley,
1981).

Fig. 23 shows the spectra as a function of 𝜙0. In general, there is an
attenuation at all scales across all layers as mass loading is increased.
This is expected from the turbulence attenuation caused by two-way
coupling (Fig. 2(c, d)). Similar to the PDFs of divergence, curl, and
helicity, the attenuation in spectra is most dramatic in the viscous
sublayer, except at the very largest scales (small wavenumbers). This
suggests that the attenuation of clustering, vortical motion, and swirling
as mass loading increases originate from small to moderate scales.
The dominant scales in the viscous sublayer correspond to the length
of and spacing between the low-speed streaks, which do not change
drastically as 𝜙0 is increased from 0.1 to 1.0. In the buffer and log
layers, the peak location does not shift much, which is expected because
𝑆𝑡+ is approximately constant for the mass loading variation. This is
confirmed by the visualisations in Fig. 15, which show similar scales
of clustering, albeit with greater number density of particles, as 𝜙0 is
increased.

Fig. 24 shows the 2D Fourier spectra of number density in 𝑘+𝑥 –𝑘+𝑧
plane for 𝜙0 = 1.0 and 𝑆𝑡+ = 7. Similar to Fig. 21, the spectra are
normalised with viscous scales. In the log layer, the spectra is close
to symmetry for the line of 𝑘+𝑥 = 𝑘+𝑧 , meaning that the clustering is
close to isotropic. However, in the viscous sublayer and buffer layer, the
spectra is more significant in the 𝑘+𝑧 direction (similar to the angular
distribution functions in Fong et al., 2019), and the peak of the 2D
18
spectra is located around 𝑘+𝑥 = 0 and 𝑘+𝑧 = 3×10−2. Thus, the spectra in
Fig. 24(a, b) reflect the spanwise structure of clustering, especially the
elongated chains of particles near the wall. Similar trends were found
in the 2D spectra for the other 𝜙0 and 𝑆𝑡+ cases.

4. Conclusions

In this study, tessellation-based methods for computing particle ve-
locity divergence, curl, and helicity were applied to turbulent channel
flow, and the influence of mass loading and Stokes number in various
flow regions was examined in detail. Probability density functions
(PDFs) of particle velocity divergence and curl reveal that these quan-
tities vary most intensely in the buffer layer. Since turbulent kinetic
energy peaks in the buffer layer, this implies that strong velocity
fluctuations drive more intense cluster formation/destruction, as well
as vorticity. In the viscous sublayer, particles form elongated clusters
in the low-speed streaks, which are transported without converging
or diverging. The wall boundary condition naturally results in a flow
with less swirling motion than in the rest of the channel, and the
presence of particles stabilises the viscous sublayer and makes the
streaks longer-lived. This makes both the fluid and particle motions
even more two-dimensional, except in the case of very large Stokes
number.

In the logarithmic layer, many similarities with results for homoge-
neous isotropic turbulence (HIT) reported by Oujia et al. (2020, 2022)
were observed. Particle clustering patterns, as well as distributions
of divergence, curl, and helicity are qualitatively similar to one-way
coupled particles in HIT, despite force coupling from the particle phase
that increases the turbulence anisotropy in wall-bounded flows, and
quantitative differences in Reynolds number. Furthermore, the spectra
of particle number density fluctuations exhibit a similar dependence on
Stokes number as compared to the HIT dataset of Matsuda et al. (2014).
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Fig. 25. Fluid streamwise velocity 𝑢+ for (a) 𝜙0 = 0.1, 𝑆𝑡+ = 7 at 𝑦+ = 2.5; (b) 𝜙0 = 0.1, 𝑆𝑡+ = 7 at 𝑦+ = 12; (c) 𝜙0 = 0.1, 𝑆𝑡+ = 7 at 𝑦+ = 100; (d) 𝜙0 = 0.4, 𝑆𝑡+ = 7 at 𝑦+ = 2.5; (e)
𝜙0 = 0.4, 𝑆𝑡+ = 7 at 𝑦+ = 12; (f) 𝜙0 = 0.4, 𝑆𝑡+ = 7 at 𝑦+ = 100.
The dynamics of particle clusters in channel flow are affected sim-
ilarly by Stokes number as they are in HIT, except in the viscous
sublayer, where the relatively low turbulence intensity and proximity
to wall boundary result in particles which behave more independently
of the fluid. Like in HIT, increasing the Stokes number results in more
intense convergence/divergence, as well as more intense rotational
motion. This effect eventually saturates, except in the viscous sublayer,
where particles become more independent of the relatively steady fluid
flow. Due to the particle feedback force, both the fluid and particle
motion become more two-dimensional (zero-helicity) in the log and
buffer layers as Stokes number is increased. In the viscous sublayer,
an initial attenuation is followed by an increase in swirling motion as
𝑆𝑡+ is increased. This non-monotonic trend further illustrates the stark
differences in clustering between the viscous sublayer and other flow
regions.
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The fact that similar trends are observed in the logarithmic layer
and buffer layer in the present results as previous studies in one-
way coupled HIT suggests that the principal driver of the observed
trends is the same preferential concentration mechanism present in
one-way coupled flows without particle feedback force or collisions.
For a further quantitative argument about the causal effect of two-way
coupling on the statistics, comparisons of the present four-way coupled
simulations with one-way and two-way coupled simulations might be
beneficial, particularly in the viscous sublayer, where different trends
are observed with respect to Stokes number.

The effect of the mass loadings studied in this work is more subtle
than the effect of Stokes number, but again, the viscous sublayer shows
unique cluster dynamics. The changes observed in the viscous sublayer
as mass loading is increased are that the variance of particle velocity
divergence and curl are both decreased, and that swirling particle
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Fig. 26. Fluid streamwise velocity 𝑢+ for (a) 𝜙0 = 1.0, 𝑆𝑡+ = 3 at 𝑦+ = 2.5; (b) 𝜙0 = 1.0, 𝑆𝑡+ = 3 at 𝑦+ = 12; (c) 𝜙0 = 1.0, 𝑆𝑡+ = 3 at 𝑦+ = 100; (d) 𝜙0 = 1.0, 𝑆𝑡+ = 60 at 𝑦+ = 2.5; (e)
𝜙0 = 1.0, 𝑆𝑡+ = 60 at 𝑦+ = 12; (f) 𝜙0 = 1.0, 𝑆𝑡+ = 60 at 𝑦+ = 100.
motions are attenuated. These changes are expected from turbulence
attenuation due to particles, which results in more anisotropic tur-
bulence and more persistent low-speed streaks near the wall. It is
surprising that similar effects are not observed in the buffer and log
layers, given that the inertia of fluid and particle phases are comparable
at 𝜙0 = 1, and the strong attenuation of the fluid-phase Reynolds stress
that occurs over this range (Fig. 2(d)). Nevertheless, as mass loading
increases from 𝜙0 = 0.1 to 𝜙0 = 1.0, there are only small changes to
divergence, curl, and helicity in the buffer and log layers. Likewise, the
spectra of number density fluctuations are much more strongly affected
in the viscous sublayer as mass loading is increased than in other
parts of the flow. The is consistent with the interpretation that in the
logarithmic layer and buffer layer, one-way coupling effects, which are
governed by Stokes number and not mass loading, are the main driver
of particle clustering, rotation, and swirl for mass loadings up to 𝜙0 = 1.
Because the volume fractions are dilute, the changes in the motion
of particle clouds observed as mass loading is varied are likely more
20
due to turbulence attenuation from two-way coupling than collisions.
We also acknowledge the possibility that further increasing the mass
loading above 𝜙0 = 1 would lead to greater changes in cluster dynamics
throughout the flow because of further turbulence attenuation, and
in this regime, additional one-way and two-way coupled simulations
would be useful to differentiate the roles of collisions and the particle
feedback force.

The PDFs based on particle motions not only quantify the cluster
formation/annihilation, rotation, and swirling of particle clouds, but
also are consistent with the structures seen in the visualisations, as
well as the number density spectra. Thus, the present approach pro-
vides both statistical and structural insights into particle clustering in
wall turbulence, which mean profiles and Eulerian analysis cannot do
alone. The techniques used in this paper can also be applied to study
clustering, rotation, and swirl of particle clouds in other regimes in the
vast parameter space of particle-laden flows (Brandt and Coletti, 2022).
For example, in flows with larger particle volume fraction, collisions
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are expected to play a significant role, and their influence on the
clustering, rotation, and swirling of particle clouds should be examined.
In future work, wavelet-based statistics and multi-resolution analysis of
particle clustering (Matsuda et al., 2022) can be used in conjunction
with these techniques to better characterise the scale dependence of
particle clustering, and how different scales of clusters contribute to
the dynamics of particle clouds.
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ppendix. Visualisations of fluid velocity

To gain a better sense of the changes in flow structure, instanta-
eous snapshots of streamwise velocity in the viscous sublayer, buffer
ayer and log layer are shown in Fig. 25, which compares mass load-
ngs 𝜙0 = [0.1, 0.4], and Fig. 26, which compares Stokes numbers
𝑡+ = [3, 60] These show the same time snapshots as Figs. 7 and
5, respectively. The effect of increasing 𝜙0 from 0.1 to 0.4 is subtle,

but in general results in an attenuation of smaller scales in the fluid
velocity field. In the viscous sublayer and buffer layer, this manifests as
more persistent and slightly more widely spaced near-wall streaks. The
persistence and stability of streaky structures illustrates how particles
stabilise the near-wall flow and dampen velocity fluctuations. The effect
of changing 𝑆𝑡+ from 3 to 60 is more extreme. Near-wall streaks

+

21

become much more stable and wider at large 𝑆𝑡 , and the streaks
persist well into the log layer, which indicates that large 𝑆𝑡+ particles
an act to thicken the viscous sublayer, make the flow more two-
imensional, and eventually kill the turbulence. The thickening of the
iscous sublayer at large 𝑆𝑡+ can also be seen in the mean velocity
rofile in Fig. 2(a).
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