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Inertial particle data from three-dimensional direct numerical simulations of
particle-laden homogeneous isotropic turbulence at high Reynolds number are analysed
using Voronoi tessellation of the particle positions and considering different Stokes
numbers. A finite-time measure to quantify the divergence of the particle velocity by
determining the volume change rate of the Voronoi cells is proposed. For inertial particles,
the probability distribution function of the divergence deviates from that for fluid particles.
Joint probability distribution functions of the divergence and the Voronoi volume
illustrate that the divergence is most prominent in cluster regions and less pronounced
in void regions. For larger volumes, the results show negative divergence values which
represent cluster formation (i.e. particle convergence) and, for small volumes, the results
show positive divergence values which represents cluster destruction/void formation (i.e.
particle divergence). Moreover, when the Stokes number increases the divergence takes
larger values, which gives some evidence why fine clusters are less observed for large
Stokes numbers.

Key words: isotropic turbulence, multiphase flow, particle/fluid flow

1. Introduction

Driven by numerous applications of polydispersed multiphase flow, e.g. the rain
formation in atmospheric cloud turbulence or the mist of droplets in the combustion
chamber of automobile or aeronautic engines, an abundant number of experimental,
numerical and theoretical studies on inertial particles in turbulence can be found in the
literature (see, e.g. Shaw 2003; Toschi & Bodenschatz 2009; Elghobashi 2019).

Self-organisation of the particle density into cluster and void regions is hereby a typical
feature observed in particle-laden turbulent flows and understanding the dynamics is
critical for the required mathematical modelling. The divergence of the particle velocity,
which differs due to inertial effects from the divergence-free fluid velocity, plays a crucial
role for this clustering mechanism.

Early results for clustering in particle-laden turbulent flows have been presented in
Eaton & Fessler (1994), and further progress of understanding clustering in homogeneous

† Email address for correspondence: thibault.oujia@etu.univ-amu.fr
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isotropic turbulence was well summarised in Monchaux, Bourgoin & Cartellier (2012).
The relationship between the divergence of inertial particle velocity and the background
flow field was derived by Robinson (1956) and Maxey (1987). They showed that the
divergence is proportional to the second invariant of flow velocity gradient tensor for
sufficiently small Stokes numbers, which is defined as the ratio of the particle relaxation
time τp to the Kolmogorov time τη. This relationship implies that particles tend to
concentrate in low vorticity and high strain rate regions in turbulence. This is referred to
as the preferential concentration mechanism. Many theoretical analyses of the preferential
concentration have been established following Maxey’s approach (e.g. Elperin, Kleeorin
& Rogachevskii 1996; Elperin et al. 2002; Chun et al. 2005; Esmaily-Moghadam &
Mani 2016). To understand clustering for large Stokes numbers, Vassilicos’ group (Chen,
Goto & Vassilicos 2006; Goto & Vassilicos 2006, 2008; Coleman & Vassilicos 2009)
proposed the sweep-stick mechanism, in which particles are swept by large-scale flow
motion while sticking to clusters of stagnation points of Lagrangian fluid acceleration.
This mechanism also explains the multiscale self-similar structure of inertial particle
clustering. Bragg, Ireland & Collins (2015) and Ariki et al. (2018) reported that the
self-similar structure of inertial particle clustering is predicted by theoretical analyses for
the inertial range of turbulence, applying Maxey’s formula to a coarse grained flow field
at scales where the turbulence time scale is sufficiently larger than the particle relaxation
time τp. Being apart from the limitation of Maxey’s formula, the statistical model for
inertial dynamics of small heavy particles were proposed by Gustavsson & Mehlig (2016).
In the model the divergence was obtained from spatial Lyapunov exponents of particle
dynamics considering correlation time of particle motion and flow velocity fluctuation
(Gustavsson & Mehlig 2011; Gustavsson, Vajedi & Mehlig 2014; Gustavsson & Mehlig
2016). Interesting findings are that ergodic multiplicative amplification can contribute to
clustering significantly under the condition of rapid turbulent velocity fluctuation.

To confirm the reliability of these mechanisms, it is important to quantify the divergence
of particle velocity based on direct numerical simulation (DNS) data. Blobs of particles
were proposed by Bec et al. (2007) to define a scale-dependent volume contraction
rate using Maxey’s formula to determine the divergence of the particle velocity for
studying coarse grained inertial particle density in the inertial range of turbulence.
Esmaily-Moghadam & Mani (2016) have evaluated the contraction rate using DNS results
to verify their theoretical analysis, but they estimated the contraction rate based on the
Lagrangian velocity gradient along the trajectory of a single particle. In this paper we aim
to compute the divergence directly from the position and velocity of a huge number of
particles, using the Voronoi tessellation technique.

Voronoi tessellation techniques have been first applied to inertial particle clustering
in a turbulent flow by Monchaux, Bourgoin & Cartellier (2010). Tagawa et al. (2012)
used the three-dimensional (3-D) technique to quantify the clustering of inertial particles
and bubbles in homogeneous isotropic turbulence obtained by DNS. Voronoi tessellation
is further applied to experimental data (Obligado et al. 2014; Sumbekova et al. 2017;
Petersen, Baker & Coletti 2019) and numerical data (Dejoan & Monchaux 2013; Baker
et al. 2017) to obtain Lagrangian statistics. The influence of Stokes and Reynolds numbers
has been analysed in Sumbekova et al. (2017). Recently, local cluster analysis of small,
settling, inertial particles in isotropic turbulence was performed in Momenifar & Bragg
(2020) using 3-D Voronoi tessellation.

An inherent difficulty for determining the divergence of the particle velocity is its
discrete nature, i.e. it is only defined at particle positions. To this end, we propose in
the present study a model for quantifying the divergence using tessellation of the particle
positions. The corresponding time change of the volume is shown to yield a measure of
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the particle velocity divergence. Considering high-Reynolds-number DNS flow data of
inertial particles in homogeneous isotropic turbulence, we determine the divergence of the
particle velocity and analyse its role for structure formation.

The outline of the manuscript is as follows. In § 2 we summarise the DNS data we
analyse and in § 3 the proposed approach to quantify the divergence of the particle
velocity is introduced. Numerical results are presented in § 4. Finally, conclusions are
drawn in § 5. Appendices A and B yield information on the reliability and the robustness
of the divergence computation and a theoretical prediction of the probability distribution
function (PDF) of the divergence for randomly distributed particles.

2. Direct numerical simulation data

We analyse particle position and velocity data obtained by 3-D DNS of particle-laden
homogeneous isotropic turbulence presented in Matsuda et al. (2014). The DNS
was performed for a cubic computational domain with a side length of 2π. The
incompressible Navier–Stokes equation was solved using a fourth-order finite-difference
scheme. Statistically steady turbulence was obtained by forcing at large scales, i.e. for
k < 2.5, where k is the wavenumber. Discrete particles were tracked in the Lagrangian
framework. The equation of particle motion is given by

dtvpj = −vpj − upj

τp
, (2.1)

where vpj is the particle velocity vector and upj is the fluid velocity vector at particle
position xpj. Note that subscript p denotes the quantity at the position of a particle (e.g.
upj ≡ u(xpj)), and the subscript j denotes the particle identification number ( j = 1, . . . , N,
where N is the total number of particles). The Stokes drag was assumed for the drag force.
The relaxation time τp is independent of the particle Reynolds number. See Onishi, Baba
& Takahashi (2011), Matsuda et al. (2014) and Matsuda & Onishi (2019) for details on the
computational method.

The number of grid points for the flow field is N3
g = 5123. The kinematic viscosity

is ν = 1.10 × 10−3. The r.m.s. of velocity fluctuation u′, energy dissipation rate ε
and Taylor-microscale-based Reynolds number Reλ (≡ u′λ/ν, where λ is the Taylor
microscale) of obtained turbulence were u′ = 1.01, ε = 0.344 and Reλ = 204. Note that
Matsuda et al. (2014) confirmed that Reλ = 204 is large enough to be representative of
high-Reynolds-number turbulence at kη > 0.05, where η ≡ ν3/4ε−1/4 is the Kolmogorov
scale (i.e. η = 7.90 × 10−3). It should be also noted that the number of grid points
is sufficiently large for resolving the turbulent flow so that kmaxη reached 2.03, where
kmax ≡ Ng/2. The number of particles N is 1.5 × 107 and the Stokes number St (≡ τp/τη,
where τη ≡ ν1/2ε−1/2) is St = 0.05, 0.1, 0.2, 0.5, 1, 2 and 5. Particles with different Stokes
numbers were tracked in an identical turbulent flow. After the turbulent flow had reached a
statistically steady state, particles were randomly seeded satisfying a Poisson distribution.
Effects of the reaction of particle motion to fluid flow and the interactions between
particles were neglected because these effects are typically small in the time scale of τη

for sufficiently dilute particles such as cloud droplets in atmospheric turbulence (Matsuda
& Onishi 2019). In the DNS data the particle number in a volume of η3 is about 0.03 and
close to the conditions in atmospheric clouds. For such particle densities, the point-particle
approximation and the one-way coupling are justified for most of the particles. For this
study, we additionally consider data of randomly distributed particles with fluid velocity
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FIGURE 1. Spatial distribution of the particles coloured with the divergence Dp for
(a) St = 0.05, (b) 0.2, (c) 1 and (d) 5 at time t = 24T0 for a slice of thickness 4η.

at the particle positions. These data are analysed as the fluid particle case; i.e. St = 0. Note
that all statistical results are averaged over 10 snapshots at time 21T0 ≤ t ≤ 30T0, where
T0 ≈ L0/u′ and L0 is the representative length which gives the domain length of 2πL0 (i.e.
L0 = 1).

Figure 1 shows two-dimensional (2-D) cuts of the particle number density for different
Stokes numbers. We can clearly observe void areas for St = 1. For St < 1, the void areas
are less clear. For St > 1, they are larger but less pronounced than for St = 1.

3. Voronoi tessellation to compute the particle velocity divergence

To understand the dynamics of inertial particles, in particular the clustering, we
consider the particle density n in the continuous setting, as shown in many studies
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Divergence and convergence of inertial particles 905 A14-5

(e.g. Maxey 1987). It satisfies the conservation equation which can be written with the
Lagrangian derivative, Dt = ∂t + v · ∇, as

Dtn = −n∇ · v. (3.1)

This illustrates that we need to know the divergence of the particle velocity, which is a
source term on the right-hand side of (3.1). The problem to determine ∇ · v is that we only
know the discrete particle distribution, and, hence, we only know the particle velocity at
the particle positions, i.e. vpj = v(xpj), but not anywhere else. In this study we apply the
Voronoi tessellation to overcome this problem.

The Voronoi tessellation (or diagram) is a technique to construct a decomposition of the
space, i.e. the fluid domain, into a finite number of Voronoi cells Ci. When a finite number
of particles pi are dispersed in space, a Voronoi cell Ci is defined as a region closer to
a particle than other particles. The volume of a Voronoi cell is referred to as Voronoi
volume and denoted by Vpi . The cell Ci can be interpreted as the zone of influence of the
particle pi. The larger the number of particles in a given volume, the smaller the Voronoi
volume. The diagram will allow us to identify particles inside clusters (corresponding
to small cells) and particles inside void regions (corresponding to large cells). A survey
on Voronoi diagrams, a classical technique in computational geometry, can be found in
Aurenhammer (1991).

We apply 3-D Voronoi tessellation to the DNS data using the Quickhull algorithm
provided by the Qhull library in python (Barber, Dobkin & Huhdanpaa 1996), which has
a computational complexity of O(N log(N)).

Here we propose a method to compute the divergence of the particle velocity D ≡ ∇ · v
in a discrete manner. Dividing (3.1) by the particle density n, we obtain

D = −1
n

Dtn. (3.2)

To calculate the Lagrangian derivative of n, we define the local number density np as the
number density averaged over a Voronoi cell, which is given by the inverse of the Voronoi
volume Vp; i.e. np = 1/Vp. We consider two time instances, tk and tk+1 = tk + Δt, where
Δt is the time step and the superscript k denotes the discrete time index.

The time-averaged number density change in the period of Δt is given by Dtn
Δt =

(nk+1
p − nk

p)/Δt, where n̄Δt = (nk+1
p + nk

p)/2 + O(Δt). Thus, we obtain a finite-time
discrete divergence of the particle velocity in the period of Δt:

Dp = − 2
Δt

nk+1
p − nk

p

nk+1
p + nk

p

+ O(Δt) = 2
Δt

Vk+1
p − Vk

p

Vk+1
p + Vk

p

+ O(Δt) (3.3)

which depends on the choice of Δt and N. This shows that the divergence of the
particle velocity can be estimated from subsequent Voronoi volumes, given that the time
step is sufficiently small and the number of particles sufficiently large. To obtain the
subsequent Voronoi volumes Vk+1

p , the particle positions were linearly advanced by vp;
i.e. xp

k+1 = xp
k + vpΔt. The time step was set to Δt = 10−3, a value which is sufficiently

small. A study of the influence of the step size and the number of particles can be found
in appendix A. The results in the appendix show that neither the time step nor the particle
number have a significant influence on the statistics of fluid particles when dividing or
multiplying the time step by a factor two, or dividing the number of particles by two.
However, for inertial particles the situation changes, except for the time step reduction by
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FIGURE 2. Voronoi tessellation generated by particles for St = 1. Two-dimensional particle
distribution in a slice of thickness 4η (a), corresponding to a zoom of figure 1(c). A magnified
view with Voronoi tessellation (b).

a factor two, while keeping N fixed, for which we obtain an almost identical PDF of Dp.
This confirms that Δt is sufficiently small. Doubling the time step with fixed N
leads to a sudden drop of the tails in the PDF, which can be explained with the
Courant–Friedrichs–Lewy (CFL) condition. The particle number dependence for fixed
Δt, which is related to the N dependence of the mean separation length, shows that for
N/2, the tails in the PDF become lighter, but the extreme values are almost unchanged.
For details, we refer to figure 7 in appendix A.

In order to consider the difference with the fluid motion, we also compute the discrete
divergence of the fluid velocity at Voronoi cells using (3.3). In this case, Vk+1

p is obtained
from fluid particle positions xp

k+1 = xp
k + upΔt instead.

Figure 2 shows a 2-D particle distribution identical to figure 1(c) and a magnified view
with a corresponding Voronoi diagram. We can observe that Voronoi cells of particles in
clusters are relatively small, while those corresponding to particles outside clusters are
large.

4. Numerical results

In the following we present numerical results for inertial particles in isotropic turbulence
considering seven different Stokes numbers. Fluid particles are likewise analysed, which
allow us to understand the statistical properties and to assess the numerical precision of
the divergence approximation in (3.3).

We compute the Voronoi volume for different Stokes numbers and we compare
statistical properties with those obtained for random particles. Figure 3(a) shows
the PDF of the Voronoi volumes Vp, which is normalised by the mean volume
Vp = (2π)3/N. For randomly distributed particles, the PDF of the Voronoi volume
becomes a gamma distribution (Ferenc & Néda 2007). For the 3-D case, the PDF of
the Voronoi volume is given by Γ (5, 1/5), where Γ (k, θ) corresponds to the PDF
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FIGURE 3. Probability distribution functions of (a) Voronoi volume normalised by the mean
and (b) divergence for particle velocity for different Stokes numbers and for randomly distributed
particles (St = 0). The inset of (a) compares the PDF for randomly distributed particles with the
gamma distribution. The inset of (b) shows the probability distribution functions for positive
divergence values in log-log representation.

fVp(x) = Γ (k)−1θ−kx k−1 exp(−x/θ) and where k and θ are shape and scale parameters,
respectively. In figure 3(a) we have confirmed that the PDF for randomly distributed
particles in our results agrees well with the gamma distribution of Γ (5, 1/5). We can see
that, as the Stokes number increases and is getting closer to 1, the number of small Voronoi
cells for Vp/Vp � 0.5 increases, and then decreases after exceeding St = 1. The number
of the large Voronoi cells increases as the Stokes number increases and it stabilises. The
PDF of the Voronoi volume is often used to determine ‘cluster cells’ and ‘void cells’.
Monchaux et al. (2010) adopted the intersection of the PDF of the Voronoi volume and
the gamma distribution as thresholds. A Voronoi cell smaller than the smaller threshold
(the left intersection) is defined as a cluster cell, and, similarly, a Voronoi cell larger than
the larger threshold (the right intersection) is defined as a void cell. In our results, the
threshold to determine cluster cells is Vp/Vp ∼ 0.5.

The divergence of the particle velocity is then computed using (3.3). Figure 3(b) shows
the PDF of the divergence of the particle velocity. The probability distribution functions
are almost symmetric, centred around 0 with stretched exponential tails.

Table 1 shows the variance and flatness of the divergence Dp as a function of the Stokes
number. The variance of the divergence increases as the Stokes number increases. For
small Stokes numbers (St ≤ 0.2), the variance is strongly reduced. The flatness of the
divergence first increases with St, reaches its maximum value around St = 0.5 and then
decreases again. This observation suggests that the tails decay faster for larger St. To
understand which part of the divergence of the particle velocity is due to a geometrical
error, we added the PDF of the divergence of the fluid velocity (St = 0). Note that for fluid
particles in the continuous setting, the divergence of the fluid velocity vanishes exactly,
whereas in the discrete setting Dp differs from zero, because the deformation of a Voronoi
cell is not exactly the same as the deformation of a fluid volume in the continuous setting.
For the divergence of the fluid velocity, we find indeed values ranging between −150
and +150. Hence, we can deduce that for Stokes numbers less than 0.2, the divergence
is mostly due to a geometrical effect, but for larger Stokes numbers, physical effects
predominate. The numerical precision of the divergence computation has been assessed
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905 A14-8 T. Oujia, K. Matsuda and K. Schneider

St 0 0.05 0.1 0.2 0.5 1 2 5

Variance 20.9 24.9 30.3 42.7 126 385 607 867
Flatness 8.67 9.97 11.1 71.2 566 368 195 83.1

TABLE 1. Variance and flatness of divergence Dp as a function of the Stokes number.
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FIGURE 4. Joint PDF of the volume of Voronoi cells in log scale and divergence in linear scale
for (a) St = 1 and (b) St = 5.

in appendix A. In appendix B the geometrical effect on the divergence is further discussed
for the case of randomly distributed particles.

To get further insight into the cluster formation, we plot the joint PDF of the divergence
Dp and the Voronoi volume Vp normalised by its mean. Figure 4 shows the joint PDF
for the cases of St = 1 and 5 where the variance of Dp for inertial particle velocity is
larger than that for fluid velocity. For these Stokes numbers, high probability is found
along the line of Dp = 0. This indicates that a large number of the particles has quite
small divergence, e.g. the divergence of 48.5 % of particles for St = 1 is smaller than the
standard deviation for St = 0. This means that a group of local particles moves together
like an incompressible flow. We can find large variance of the divergence that corresponds
to the variance shown in figure 3(b). Such high probability of large positive/negative
divergence is observed for cluster cells (Vp/Vp � 0.5). A possible reason is that the
probability of finding particles in cluster regions is higher than in void regions, as shown in
figure 3(a). Another possible explanation is that the ‘caustics’ (Wilkinson & Mehlig 2005)
of the particle density, where the particle velocity at a single position is multi-valued, result
in a large velocity difference of two particles with a small separation distance and cause
the extreme divergence values observed in the joint probability distribution functions.

One would expect that particles in clusters are more likely to experience negative
divergence. However, to maintain the statistically stationary state of the PDF of Voronoi
volumes, positive divergence values must be comparable to the negative divergence
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Divergence and convergence of inertial particles 905 A14-9

values in clusters. If cluster volumes showed only negative divergence (cluster formation)
and void volumes showed only positive divergence (void formation), particles would
concentrate at infinitesimal volumes at the end, i.e. cluster destruction and void destruction
are necessary for a statistically dynamic equilibrium.

In figure 4 it is also observed that large positive divergence values are mostly found at
smaller volumes compared to large negative divergence values. This trend becomes more
pronounced as the Stokes number increases and suggests asymmetry of the probability of
positive and negative Dp. The larger probability of positive values of Dp for small volumes
(particles in clusters) is attributed to the crossing motion of particles in clusters. When two
particles are approaching each other the divergence is negative, but if two particles have
large relative approaching velocities the particles start leaving from each other within the
finite time Δt and the divergence changes to positive. This would happen prominently in
caustic regions. As the Stokes number increases, the deviation of particle motion from
fluid flow becomes larger and the relative particle velocity increases. Thus, the influence
of the crossing motion of particles is more pronounced. These results further suggest that
cluster formation is driven by the underlying flow field, but the cluster formation coincides
with cluster destruction in a fine cluster with the dissipation scale. Thus, the divergence
and convergence of particles in clusters are not determined only by the underlying flow
field. To confirm that, we coloured in figure 1 each particle by its divergence value Dp. It
is observed that particles with large positive and negative values are concentrated in fine
clusters, and, thus, the cluster formation coincides with cluster destruction, as expected.
Particles with large positive/negative divergence are found not in all clusters, but some
portion of clusters have only moderate divergence. That is, there are two types of clusters,
those associated with strong cluster formation and cluster destruction and those which are
formed and destroyed by modest change. Figure 1 further illustrates that the clusters with
strong formation and destruction are intermittently distributed for all Stokes numbers, even
for the case of St ≤ 0.2, and the portion of such clusters seems to increase as the Stokes
number increases.

We also compute the mean of the divergence as a function of the volume which
corresponds to the conditional average of the divergence, defined as

〈Dp〉Vp = 1

P(Vp/Vp)

∫ +∞

−∞
DpP(Dp, Vp/Vp) dDp, (4.1)

and shown in figure 5(a). Negative values correspond to convergence of the particles
and positive values to divergence. We can see that the mean of the divergence 〈Dp〉Vp
is negative for large volumes and turns to positive as the volume becomes smaller.
This indicates that the cluster formation is active for large volumes, while cluster
destruction/void formation is active for small volumes. For the considered Stokes numbers,
the zero-crossing points are Vp/Vp ≈ 0.1–0.2. This can be expressed in terms of the
dissipation scale η of the flow which is η = 7.9 × 10−3. Using the relation Vp/η

3 =
(2π)3/(Npη

3) ≈ 33.54, we can conclude that the scales of the zero-crossing point are
ranging in V1/3

p /η ≈ 1.49–1.88. Moreover, we observe that when the Stokes number
increases, the divergence takes larger values for both negative and positive sides. This
means that the cluster formation becomes intensified as the Stokes number increases,
and the cluster destruction for small volumes is also amplified. That is, when the Stokes
number increases, for Vp/Vp � 0.2, cluster formation is intensified, whereas for Vp/Vp �
0.2, cluster destruction is intensified. Strong cluster destruction suggests that clusters are
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FIGURE 5. Mean divergence 〈Dp〉Vp (a) and skewness (b) as a function of the Voronoi volume
for different Stokes numbers. A moving average filter has been applied for the skewness. The
inset shows a zoom to illustrate the presence of negative values.

destroyed before they become finer clusters. This is consistent with the fact that fine
clusters are less observed as the Stokes number becomes larger than one.

The difference in magnitude between positive and negative values of the conditional
divergence in figure 5(a) can be related to the second-order velocity structure function
S2(r) = 〈|u(x + r) − u(x)|2〉. For isotropic turbulence, we have S2(r) ∝ C2r2/3 for η �
r � lE (where lE is the energy scale) and S2(r) ∝ r2 for r � η. The structure function of
the inertial particle velocity is similar to the one of the fluid velocity for η � r � lE, for
r � η it deviates from r2-scaling and does not approach zero for finite Stokes numbers
(Salazar & Collins 2012; Ireland, Bragg & Collins 2016). This means that for r � η, the
r.m.s. particle velocity difference is

√
〈|δv|2〉 ∝ r1/3. Thus, the increase of the velocity

difference with r is statistically slower than the increase of the separation distance r, i.e.
Dp ∼

√
〈|δv|2〉/r decreases with r. For r � η, Dp ∼

√
〈|δv|2〉/r increases with decreasing

r because the r.m.s. particle velocity difference at zero separation distance has a finite
value for inertial particles. Thus, the absolute values of divergence decrease as the volume
increases.

To quantify the asymmetry of the joint probability distribution functions in figure 4, we
plot in figure 5(b) the skewness of the divergence as a function of the Voronoi volume.
We observe a similar trend, positive values for small volumes and negative values for large
volumes, for the shown Stokes numbers. The negative values of the skewness are more
significant than those of 〈Dp〉Vp, and, thus, we can confirm the asymmetry of the joint
PDF at intermediate volumes in the range more clearly, e.g. for St = 1 from Vp/Vp = 10−1

to almost 101. For all Stokes numbers, 〈Dp〉Vp ≈ 0 and the skewness is close to zero for
Vp/Vp > 102. This indicates that the joint PDF is symmetric, which suggests that void
formation almost balances void destruction.

5. Conclusions

Voronoi tessellation of the particle positions was applied to different homogeneous
isotropic turbulent flows at high Reynolds numbers computed by 3-D direct numerical
simulation. Random particles and inertial particles with different Stokes numbers were
considered. For analysing the clustering and void formation of the particles, we proposed
to compute the volume change rate of the Voronoi cells and we showed that it yields a
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Divergence and convergence of inertial particles 905 A14-11

finite-time measure to quantify the divergence. We assessed the numerical precision of
this measure by applying it to fluid particles, which are randomly distributed without
self-organisation due to the volume preserving nature of the fluid velocity. From this
we concluded that sufficiently large Stokes numbers (St > 0.2) are necessary to obtain
physically relevant results.

Considering the joint PDF of the divergence and the Voronoi cell volume illustrates that
the divergence is most pronounced in cluster regions of the particles and much reduced
in void regions. We showed that for larger volumes, we have negative divergence values
which represent cluster formation (i.e. particle convergence) and for small volumes, we
have positive divergence values which represents cluster destruction/void formation (i.e.
particle divergence). Our results suggest that the divergence and convergence of particles
in clusters are not determined only by the underlying flow field, and the detailed features
will be analysed in future work.

Finally, our results indicate that when the Stokes number increases the divergence
becomes positive for larger volumes, which gives some evidence why for large Stokes
numbers fine clusters are less observed for Stokes number larger than one.

The idealized situation in the present work considering point particles and one-way
coupling at moderate Reynolds number can be extended in different directions. Studying
the dynamics in the inertial range of particle-laden very large-Reynolds-number flows is
an interesting perspective, the application to flows with finite size particles taking into
account two-way (or four-way) coupling is likewise challenging. The proposed method
for determining the divergence of the particle velocity can be also applied (within some
limitation due to the discretization) to lower seeding density situations encountered in
experiments. Hence, our approach is more general and can be applied to experimental and
DNS data in more complex situations.
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Appendix A. Numerical precision of the divergence computation

A.1. Reliability of the method
To assess the reliability of the discrete Voronoi-based divergence computation proposed in
(3.3), we consider a stationary periodic velocity field u in two space dimensions, which has
no vanishing divergence. We inject Np = 105 randomly distributed fluid particles into the
2π-periodic square domain and advect them for one time step Δt = 10−2 using the explicit
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Euler scheme. Then we apply Voronoi tessellation and compute the volume change of the
Voronoi volumes according to (3.3).

Figure 6(a) superimposes the velocity field and its divergence, and figure 6(b) gives
the absolute value of the divergence error in log scale. We observe that the error is most
important in strain dominated regions. Hence, we compute the strain rate of the flow,
sijsij = 2 cos2 x sin2 y, where sij = (∂jui + ∂iuj)/2 − δij∂kuk/2. As the correlation between
the magnitude of the divergence error and the strain rate is nonlinear, we decided to use
the Spearman correlation coefficient instead of the Pearson one. We find reasonably well
agreement with strong correlation-ship reflected in the value rs = 0.683.

The joint PDF of the exact divergence and the discrete Voronoi divergence in figure 6(c)
illustrates nicely the strong correlation between the two quantities, as expected. To quantify
this correlation, we plot in figure 6(d) the Pearson correlation coefficient for an increasing
number of particles, i.e. from N = 103 to 104 with 15 values distributed equidistantly in log
scale. Shown are box plots indicating the median, and boxes with the first and third quartile
to quantify the variability together with min/max values. After a monotonous increase, we
observe for N ≥ 4 × 103 a saturation at the value of r = 0.936, which confirms the strong
correlation and also shows that the error does not tend to zero when increasing the number
of particles further. However, for an increasing number of points, the variability is strongly
reduced.

To summarise, the above discrete divergence results for particles in a given divergent
2-D flow are in good agreement with the exact values of the divergence of the carrying
flow field. This shows that the proposed finite-time Voronoi tessellation-based method is
well suited and reliable for computing the divergence of the particle velocity.

A.2. Robustness of the method
To verify the robustness of the discrete Voronoi-based divergence computations, we
consider again the previously presented 3-D DNS data for St = 0 and 1. We check the
influence of the time step Δt and of the number of particles N on the statistics of the
computed discrete divergence of the carrying flow field. Note that in the DNS we have
N = 1.5 × 107 and Δt = 10−3.

Figure 7 shows the PDF of the divergence Dp for different values of Δt and N. For
St = 0, the probability distribution functions remain almost unchanged and perfectly
superimpose when dividing or multiplying the time step by a factor two, or dividing
the number of particles by two, which proves the robustness of the statistics for fluid
particles. For St = 1, the situation changes with the exception of time step reduction,
while keeping N fixed. Replacing Δt by Δt/2 yields an almost identical distribution. This
shows that the time step has been chosen sufficiently small. Increasing Δt to 2Δt, while
keeping N fixed, some dependence is found for |Dp| > 500 and the tails suddenly decay
around Dp = ±1000. This can be explained by the CFL condition for the volume change:
|DtVp|Δt/Vp < O(1). The divergence is given by Dp = DtVp/Vp. Thus, |Dp| < O(1/Δt)
would satisfy the CFL condition.

The N dependence of the divergence is due to the N dependence of the mean separation
length l. The sampling density becomes coarser as N decreases, and then the Voronoi
tessellation results loose the information at fine scales. This is reflected in lighter tails in
the PDF for N/2 compared to the one obtained with N particles. However, the extreme
values are not significantly modified. Thus, the N dependence can be considered as
the difference in the sampling density. The divergence at caustic regions would be also
sensitive to the sampling density.
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FIGURE 6. Velocity field u(x, y) = (cos(x) cos( y), − sin(x) sin( y)) superimposed with its
divergence ∇ · u(x, y) = −2 sin(x) cos( y) (a). Difference between the exact divergence and
the discrete Voronoi divergence in log scale (b). Joint PDF of the exact divergence and the
discrete Voronoi divergence, together with the one-dimensional (1-D) probability distribution
functions of the exact divergence and the Voronoi divergence (c). Pearson correlation coefficient
between exact and Voronoi divergence as a function of the number of particles N with limit value
r = 0.936, represented by box plots (d). The horizontal line is the median, the upper and lower
box are respectively the first and the third quartile, and the top and bottom lines are the largest
and the lowest data points, respectively, excluding any outliers.

A.3. Geometrical effect
To quantify the influence of the Voronoi tesselation, we computed the variance of the
discrete divergence for St = 0, 0.1, 0.5, 1 and 5 for a varying number of particles from
N/8192 to N, the results are shown in figure 8.
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FIGURE 7. Probability distribution function of the divergence, Dp, for (a) St = 0 and (b) St = 1
for three time steps Δt = 10−3, 2Δt and Δt/2, and two numbers of particles N and N/2. Moving
average smoothing was applied.
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FIGURE 8. Variance of the computed discrete divergence Dp for St = 0, 0.1, 0.5, 1 and 5′ as
a function of the number of particles Np = N, N/2, N/4, N/8, N/16, N/32, N/128, N/1024,
N/2048, N/4096 and N/8192, where N = 1.5 × 107.

For fluid particles, St = 0, the variance of the divergence V(Dp) should be equal to 0
for any number of particles. Figure 8 illustrates that this is not the case. The variance for
St = 0 even grows with N and then saturates for N > 106. This error is due to geometrical
effects: the error appears because the deformation of Voronoi cells is not the same as the
one of the fluid. We remark that for particles on a Cartesian grid this geometrical effect is
absent. Note that the geometrical effect does not decrease even when we further increase
the number of particles for St = 0 because the geometrical effect of deformation remains
also for smaller Voronoi cells. Comparing the cases St = 0 and St = 0.1, we find almost
identical values for the variance for N < 105. However, for N > 106, the variance values
for St = 0.1 are larger than those for St = 0. This difference is brought about by a physical
effect.
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St 0.05 0.1 0.2 0.5 1 2 5

Percent 75.2 72.6 67.7 57.3 48.5 41.5 31.3

TABLE 2. Percentage of particles with the magnitude of the divergence below the standard
deviation of the discrete divergence of fluid particles (std = 4.571).

To explain the N dependence of the variance, we introduce the particle separation scale
l = Vp

1/3 = 2πN−1/3 and the corresponding wavenumber kN ≡ 2π/l = N1/3. The energy
spectrum of turbulence shows strong decay for kη � 1. In order to resolve fluid flows in the
dissipation scale, the particle separation l should satisfy kNη > 1, which is given by N >
2.03 × 106. This explains why the variance for St = 0 is constant for N > 106 in figure 8.
For the cases of 0 < St < 1, the clustering particle dynamics occur mainly at the scale
smaller than the dissipation scale. Hence, kNη > 1 gives the minimum number of particles
to observe the difference from the case of St = 0, i.e. the number of particles in the volume
of η3 should satisfy nη3 > (2π)−3. For St ≥ 1, the clustering is more significant and there
is no minimum scale (as illustrated in the number density spectrum in Matsuda et al. 2014).
Thus, it is challenging to determine the minimum number of particles for an arbitrary
Stokes number.

The difference of the variance implies that the divergence for St ≤ 0.1 is not fully
dominated by the geometrical effect. Table 2 shows the percentage of particles for which
the magnitude of the divergence is below the standard deviation (with value std = 4.571)
of the computed discrete divergence of the fluid particles (St = 0). For St ≤ 1, a large
number of particles has a divergence smaller than the standard deviation of the computed
discrete divergence of the fluid particles. However, a certain amount of particles shows
significantly large divergence values.

A.4. Fluid particles: influence of sampling
For fluid particles (St = 0) in the continuous setting, the divergence of the fluid velocity
vanishes exactly, while in the discrete setting Dp differs from zero. The reason is that the
deformation of a Voronoi cell is not exactly the same as the deformation of a fluid volume
in the continuous setting. The fluid particles of St = 0 are sampled homogeneously in
space, while the inertial particles are distributed inhomogeneously. To check the influence
of the sampling of the fluid velocity, we use the Voronoi tessellation for eight Stokes
numbers St = 0, 0.05, 0.1, 0.2, 0.5, 1, 2 and 5. Then we compute the divergence of the
fluid velocity using the volume change of the corresponding Voronoi tessellation.The
resulting probability distribution functions of the divergence of the fluid velocity are
shown in figure 9. The divergence of fluid velocity for inertial particle positions has
slightly heavier tails than that for homogeneous sampling. However, the divergence of
the fluid velocity take values ranging between −150 and +150. This confirms that for
Stokes numbers less than 0.2, the divergence is mostly due to the geometrical effect, and
for larger Stokes numbers, the divergence of the particle velocity is a physical effect with
values significantly larger.

Appendix B. Randomly distributed particles

To quantify the geometrical error of the divergence estimation, we consider first
a simple toy model in one dimension. We consider randomly distributed particles
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FIGURE 9. Probability distribution function of divergence of the fluid velocity using Voronoi
tessellation of the particle positions for St = 0, 0.05, 0.1, 0.2, 1, 2 and 5.

and move them randomly to the left and to the right on the line. We assume that
the particle velocity satisfies a normal distribution with zero mean and variance σ 2,
i.e. vp ∼ N (0, σ 2). The volume change DtVp is given by the relative velocity of
neighbour particles: DtVp = (vp,right − vp,left)/2, and, thus, the PDF of the normalised
volume change (DtVp)

∗ ≡ DtVp/v0 exhibits N (0, σ ′2), where σ ′ = σ/
√

2v0 and v0 is
the representative particle velocity. The Voronoi volume satisfies a gamma distribution
Γ (k, θ) with shape parameter k = 2 and rate θ = 1/2, i.e. V∗

p ≡ Vp/Vp ∼ Γ (2, 1/2).

The PDF of the normalised divergence D∗
p ≡ Dp/(Vp

−1
v0) is then given by the product

distribution of two independent random variables X = (DtVp)
∗ ∼ N (0, σ ′2) and Y =

V∗
p

−1 ∼ Γ −1(2, 2), where Γ −1(k, 1/θ) is the inverse gamma distribution defined as
fY( y) = (θ−k/Γ (k))(1/yk+1) exp(−1/(θy)). Note that we consider the absolute value of
the divergence because the PDF of the divergence is symmetric in this case. Using the
scaled complementary error function erfcx(x) ≡ ex2{1 − erf(x)}, where erf(x) is the error
function, we finally obtain the expression for the PDF of Z = |D∗

p |,

f|Dp∗|(z) = K1

2z5

(√
2πσ ′3(4σ ′2 + z2)erfcx

(√
2σ ′

z

)
− 4σ ′4z

)
, (B 1)

where K1 is a normalisation constant.
Figure 10(a) shows the PDF corresponding to the ratio of a normal and a gamma

distribution, given by (B 1), in red and the PDF obtained using Monte–Carlo simulations
with 107 particles. We find perfect agreement between the theory and the numerical
simulation.

The above model for the divergence of random particles can be extended to three
dimensions. In three dimensions the divergence is normalised as D∗

p ≡ Dp/(l−1v0), where

l is the mean particle distance l ≡ Vp
1/3

. Similarly to the 1-D case, we consider the
product distribution of two independent random variables X = |(DtVp)

∗| and Y = V∗
p

−1,
assuming (DtVp)

∗ ≡ DtVp/(l2v0) ∼ N (0, σ ′2) and V∗
p

−1 ∼ Γ −1(5, 5). The resulting PDF
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FIGURE 10. Probability distribution function of the divergence of the particle velocity using
Voronoi analysis in (a) one dimension and in (b) three dimensions. Shown are the theoretical
PDF f|Dp|, the Monte–Carlo (M-C) simulation results for Voronoi cells advected by a velocity
satisfying a normal law and in the 3-D case additionally the DNS results for fluid particles,
St = 0. The vertical line corresponds to 99 % probability. The insets show the corresponding
probability distribution functions of the normalised volume changes: Monte–Carlo simulations
(green) and St = 0 (dashed line) in three dimensions, together with fits for the normal (red) (with
parameter σ = 3.06) and logistic distribution (blue) (with parameter s = 1.84), respectively.

of Z = |D∗
p | becomes

f|D∗
p |(z) = K3

(
σ ′

z

)6
[

8 + 9
(

5σ ′

z

)2

+
(

5σ ′

z

)4

−
{

15 + 10
(

5σ ′

z

)2

+
(

5σ ′

z

)4
}

√
π

(
5σ ′
√

2z

)
erfcx

(
5σ ′
√

2z

)]
, (B 2)

where K3 is the normalisation constant for the 3-D case. Note that evaluating this
expression numerically is ill conditioned and some identities and approximations need
to be used for stabilisation.

Figure 10(b) shows that the PDF obtained with the Monte–Carlo simulation perfectly
superimposes with the theoretical prediction (B 2) for values smaller than ≈ 101. For
larger values, the two curves exhibit some deviation and the observed small deviation
is certainly due to the approximation made in Ferenc & Néda (2007) concerning
the choice in the parameters of the gamma distribution. The insets in figure 10
show the probability distribution functions of the time change of the Voronoi volume
for the 1-D and 3-D cases, respectively. In one dimension we observe a perfect
superposition of the Monte–Carlo results with the normal distribution, while in three
dimensions this is not the case. A better fit is observed for the logistic distribution.
A possible explanation of the heavy tails in the PDF for the 3-D case is that the variance of
the volume change becomes larger as the Voronoi volume increases. This happens because
the larger Voronoi volume tends to have a larger surface area. Large variance of the volume
change at large volume then causes heavier tails in the PDF of the volume change than the
normal distribution, because the gamma function has an exponential tail.
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